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OPEN QUESTIONS -Crowdsourced
1. Experimentally, identify the broken 

symmetry of the correlated insulators and 
the pairing symmetry of the 
superconductor.


2. What is the nature of the transition into 
the superconductor KT/BCS..?


3. What is the role of strain and disorder in 
magic angle graphene?


4. Are there any TMD moire’ 
superconductors? Is there an entirely 
different setting for correlated 
insulators+superconductors in moire 
materials different from the twisted bilayer 
and alternating multilayers.


5. Theoretically, what is the minimal model 
for TBG?


6. Can we engineer a 300k superconductor 
using the lessons from moire’ materials?




OUTLINE

• Lecture 1 - Preliminaries, the chiral model, wave 
functions, from bilayer to n=3,4,5.. 

• Lecture 2 - Correlated Insulators - exact solutions, 
Hartree Fock, topology and  model.


• Lecture 3 - Superconductivity - disordered  model.


• Lecture 4 - Fractional Chern insulators in magic angle 
graphene

σ

σ



Crystals - Artificial Vacuum for Electrons

Vacuum Tubes <1960s Transistor

Modify properties of the electron

Effective mass, electrons+holes etc.

“A sudden gasp filled the room when he 

flicked on an oscillator circuit,  

and it emitted a shrill tone instantaneously, 

with no warmup delay whatsoever.”  

Demonstration of the Transistor 1948  

From - Crystal Fire



• Semi-classical theory of electrons in a crystal

k

E

• Symmetry restored in a crystal – Berry Flux      
leads to an anomalous velocity. 

• Berry Flux is related to the Berry’s phase acquired 
by states in the band. “Quantum Geometry” of 
bands. 

Qualitatively new effects?



Tuning the Topology and Geometry of Bands

(Bi,Sb)2−xCrxTe3 Zhao et al. Nature 2020

W ~ 8 meV
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FIG. 2. (a) Energy band and the density of states of TBG
at θ = 1.05◦, where the lower panel is the enlarged plot of the
zero-energy region. The black solid line and red dashed line
represent the energy bands of ξ = ± valleys, respectively. (b)
Contour plots of E1(k) and E2(k) for the valley ξ = +. The
dashed contour corresponds to the filling of two electrons /
holes per super cell (n/n0 = ±2).

for the basis of (A1, B1, A2, B2) as

H(ξ) =

(

H1 U †

U H2

)

. (1)

Here Hl(l = 1, 2) is the intralayer Hamiltonian of layer
l, which is given by the two-dimensional Weyl equation

centered at K(l)
ξ point,

Hl = −!v[R(±θ/2)(k−K
(l)
ξ )] · (ξσx,σy), (2)

where ± is for l = 1 and 2, respectively. We take !v/a =
2.1354 eV.34 U is the effective interlayer coupling given
by34–36

U =

(

UA2A1 UA2B1

UB2A1 UB2B1

)

=

(

u u′

u′ u

)

+

(

u u′ω−ξ

u′ωξ u

)

eiξG
M
1 ·r

+

(

u u′ωξ

u′ω−ξ u

)

eiξ(G
M
1 +GM

2 )·r, (3)

where ω = e2πi/3. Here u and u′ describe the amplitudes
of diagonal and off-diagonal terms, respectively, in the
sublattice space. The effective models in the previous
studies34–36 assume u = u′, which corresponds to a flat
TBG in which the interlayer spacing d is constant ev-
erywhere. On the other hand, several theoretical studies
predicted that the optimized lattice structure of TBG is
actually corrugated in the out-of-plane direction, in such
a way that d is the widest in AA stacking region and
the narrowest AB / BA stacking region.41–44 Here we in-
corporate the corrugation effect as a difference between
u = 0.0797eV and u′ = 0.0975eV in the effective model,
of which detailed derivation is presented in the Appendix
A. As we show in the following, the difference between u
and u′ introduces energy gaps between the lowest bands
and the excited bands, in a qualitative agreement with
the experimental observation.1,2,37 It was found that the
energy gaps isolating the lowest nearly-flat bands are also
caused by the in-plane distortion.38

The calculation of the energy bands and the eigenstates
is done in the k-space picture. For a single Bloch vector
k in the moiré Brillouin zone, the moiré interlayer cou-
pling hybridizes the graphene’s eigenstates at q = k+G,
where G = m1G

M
1 +m2G

M
2 and m1 and m2 are integers.

Therefore the eigenstate is written as

ψX
nk(r) =

∑

G

CX
nk(G)ei(k+G)·r, (4)

where X = A1, B1, A2, B2 is the sublattice index, n is
the band index and k is the Bloch wave vector in the
moiré Brillouin zone. As the low-energy states are ex-
pected to be dominated by the individual graphenes’
eigenstates near the original Dirac points, we pick up
q’s inside the cut-off circle |q − q0| < qc, where q0 is

taken as the midpoint between K
(1)
ξ and K

(2)
ξ , and qc is

set to 4GM (GM = |GM
1 | = |GM

2 |). Since the intervalley
coupling can be neglected, the calculation is done inde-
pendently for each of ξ = ± as we discussed previously.
We then numerically diagonalize the Hamiltonian within
the limited wave space inside the cut-off circle and obtain
the eigenenergies and eigenstates.
Figure 2(a) shows the energy band and the density of

states of TBG at the magic angle θ = 1.05◦, calculated
by this approach. Here in the following, the origin of
band energy axis is set to the charge neutral point. The
lower panel is the enlarged plot of the zero-energy region

Koshino et al

Gap ~ 30 meV

Wavefunctions!
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-

↵1 ↵2 ↵3

↵1 = 0.586 ↵2 = 2.221 ↵3 = 3.751
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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I. MAGIC ANGLES

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM 0.586 2.221 3.75 5.28 6.80

BM-CM 0.606 1.27 1.82 2.65 3.18

U(r) = e�iq1r + ei�e�iq2r + e�i�e�iq3r (1)

T (r) =

0

@ w0U0(r) w1U(r)

w1U⇤(�r) w0U0(r)

1

A (2)
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↵1 ↵2 ↵3 ↵4 ↵5

CS-CM 0.586 2.221 3.75 5.28 6.80

BM-CM 0.606 1.27 1.82 2.65 3.18

U(r) = e�iq1r + ei�e�iq2r + e�i�e�iq3r (1)

U(r) = e�iq1r + ei2⇡/3e�iq2r + e�i2⇡/3e�iq3r (2)

U0(r) = e�iq1r + e�iq2r + e�iq3r (3)

T (r) =

0

@ w0U0(r) w1U(r)

w1U⇤(�r) w0U0(r)

1

A (4)
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I. MAGIC ANGLES

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM 0.586 2.221 3.75 5.28 6.80

BM-CM 0.606 1.27 1.82 2.65 3.18

U(r) = e�iq1r + ei�e�iq2r + e�i�e�iq3r (1)

U(r) = e�iq1r + ei2⇡/3e�iq2r + e�i2⇡/3e�iq3r (2)

U0(r) = e�iq1r + e�iq2r + e�iq3r (3)

T (r) =

0

@ w0U0(r) w1U(r)

w1U⇤(�r) w0U0(r)

1

A (4)

Two$layers$of$graphene$with$
a$relative$twist

Electronic$spectrum$is$
described$by$the$continuum$Hamiltonian:
two$Dirac$fields$coupled$by$the$interlayer$
interaction

Continuum(model(for(
Twisted(Bilayer(Graphene
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In$general$it$has$two$parameters$$$$$$$$$$and$$
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0. Recall Some Properties of Graphene



Graphene and Dirac Points

A

B

Hk = ~dk · ~�
dx = �t (cos k · a1 + cos k · a2 + cos k · a3)
dy = �t (sin k · a1 + sin k · a2 + sin k · a3)

dz = 0 “Chiral Symmetry” {σz, Hk} = 0

Dirac Points - vortices in d vector



Graphene and Dirac Points

Three ways to remove Dirac Cones:

1. Break P (r—> -r) symmetry - staggered potential (B-N)

2. Break T symmetry - Haldane term

3. Break C3 rotation and annihilate 

Dirac points (needs finite strength)

�H = m�z



Twisted Bilayer Graphene
Continuum Approximation - each layer Dirac points.

Valley 1Valley 2



Dirac Landau Levels

Valley K, A siteB B

H± = (px − eAx)σx ± (py − eAy)σy (+K, -K) valleys

A =
B
2

(−y, x)

H− = ℏωc ( 0 a
a† 0) ! 0

|0⟩ =0Zeroth Landau Level  
is a `zero mode’. 

Sublattice polarized

a = − i (2
∂
∂z̄

+
1
2

z) Ψ0(z = x + iy) = f(z)e− 1
4 |z|2



Strained Graphene - Dirac Landau Levels

• Strained graphene Landau 
levels [Guinea, Crommie, Castro-Neto, 2010]

Valley K, A siteB

Valley K’, A site-B

• Here - “2-copies” of strained graphene Landau levels



1. The Wavefunctions 
of 

Magic Angle Flat Bands



Graphene



Twisted Bilayer Graphene 
Moire’ Lattice



Moire Unit Cell and Brillouin Zone

Valley 1Valley 2

Graphene BZ



Moire Unit Cell and Brillouin Zone

Valley K’

E

Valley K



Moire Unit Cell and Brillouin Zone

Valley 1Valley 2

Graphene BZ

4e to fill a unit cell (spin and valley)?

Moire Brillouin Zone



Moire Unit Cell and Brillouin Zone

Valley 1Valley 2

Graphene BZ

Actually, 8e to fill a unit cell 

New degree of freedom:  spin + valley + band Moire Brillouin Zone



Symmetries of Twisted Bilayer Graphene

• At small angles - emergent C6 symmetry. Commensurate vs incommensurate is irrelevant.  

• Valley conservation -> U(1)v symmetry. 

• The C2 part of the symmetry is crucial and specific to twisted bilayer graphene. 

• Flat band topology - no tight binding model of just flat bands that preserves C2T & U(1)v 
symmetries.

<latexit sha1_base64="XNzdiAV2nrSIQS1CsWHEF89cGMs=">AAAB/XicdVDJSgNBEO2JW4xbXG5eGoPgKczEbN4CXjxGMAtkYujpVJImPYvdNUIMwV/x4kERr/6HN//GziKo6IOCx3tVVNXzIik02vaHlVhaXlldS66nNja3tnfSu3t1HcaKQ42HMlRNj2mQIoAaCpTQjBQw35PQ8IbnU79xC0qLMLjCUQRtn/UD0ROcoZE66QMXB4DM1cKHG1q8drlQvJPO2Nmzcu606FBDSvlCqTQl5XLOLlAna8+QIQtUO+l3txvy2IcAuWRatxw7wvaYKRRcwiTlxhoixoesDy1DA+aDbo9n10/osVG6tBcqUwHSmfp9Ysx8rUe+Zzp9hgP925uKf3mtGHvl9lgEUYwQ8PmiXiwphnQaBe0KBRzlyBDGlTC3Uj5ginE0gaVMCF+f0v9JPZd17Kxzmc9Uqos4kuSQHJET4pASqZALUiU1wskdeSBP5Nm6tx6tF+t13pqwFjP75Aest0/SXJWD</latexit>

[Po, Zou, Senthil, AV - PRX, PRB 2018]



Symmetries: C6 vs C3?

Which one(s) doesn’t have six-fold 
rotation symmetry about the bright spots?



The Dirac points in each valley have the same 
chirality.  

Origin: the  graphene Dirac dispersion.  

Prohibits a symmetric 2-band tight binding model. [Po, 
Zou, Senthil, AV - PRX, PRB 2018]

Topology and Obstruction to 2-band model

3

FIG. 2. (a) Energy band and the density of states of TBG
at θ = 1.05◦, where the lower panel is the enlarged plot of the
zero-energy region. The black solid line and red dashed line
represent the energy bands of ξ = ± valleys, respectively. (b)
Contour plots of E1(k) and E2(k) for the valley ξ = +. The
dashed contour corresponds to the filling of two electrons /
holes per super cell (n/n0 = ±2).

for the basis of (A1, B1, A2, B2) as

H(ξ) =

(

H1 U †

U H2

)

. (1)

Here Hl(l = 1, 2) is the intralayer Hamiltonian of layer
l, which is given by the two-dimensional Weyl equation

centered at K(l)
ξ point,

Hl = −!v[R(±θ/2)(k−K
(l)
ξ )] · (ξσx,σy), (2)

where ± is for l = 1 and 2, respectively. We take !v/a =
2.1354 eV.34 U is the effective interlayer coupling given
by34–36

U =

(

UA2A1 UA2B1

UB2A1 UB2B1

)

=

(

u u′

u′ u

)

+

(

u u′ω−ξ

u′ωξ u

)

eiξG
M
1 ·r

+

(

u u′ωξ

u′ω−ξ u

)

eiξ(G
M
1 +GM

2 )·r, (3)

where ω = e2πi/3. Here u and u′ describe the amplitudes
of diagonal and off-diagonal terms, respectively, in the
sublattice space. The effective models in the previous
studies34–36 assume u = u′, which corresponds to a flat
TBG in which the interlayer spacing d is constant ev-
erywhere. On the other hand, several theoretical studies
predicted that the optimized lattice structure of TBG is
actually corrugated in the out-of-plane direction, in such
a way that d is the widest in AA stacking region and
the narrowest AB / BA stacking region.41–44 Here we in-
corporate the corrugation effect as a difference between
u = 0.0797eV and u′ = 0.0975eV in the effective model,
of which detailed derivation is presented in the Appendix
A. As we show in the following, the difference between u
and u′ introduces energy gaps between the lowest bands
and the excited bands, in a qualitative agreement with
the experimental observation.1,2,37 It was found that the
energy gaps isolating the lowest nearly-flat bands are also
caused by the in-plane distortion.38

The calculation of the energy bands and the eigenstates
is done in the k-space picture. For a single Bloch vector
k in the moiré Brillouin zone, the moiré interlayer cou-
pling hybridizes the graphene’s eigenstates at q = k+G,
where G = m1G

M
1 +m2G

M
2 and m1 and m2 are integers.

Therefore the eigenstate is written as

ψX
nk(r) =

∑

G

CX
nk(G)ei(k+G)·r, (4)

where X = A1, B1, A2, B2 is the sublattice index, n is
the band index and k is the Bloch wave vector in the
moiré Brillouin zone. As the low-energy states are ex-
pected to be dominated by the individual graphenes’
eigenstates near the original Dirac points, we pick up
q’s inside the cut-off circle |q − q0| < qc, where q0 is

taken as the midpoint between K
(1)
ξ and K

(2)
ξ , and qc is

set to 4GM (GM = |GM
1 | = |GM

2 |). Since the intervalley
coupling can be neglected, the calculation is done inde-
pendently for each of ξ = ± as we discussed previously.
We then numerically diagonalize the Hamiltonian within
the limited wave space inside the cut-off circle and obtain
the eigenenergies and eigenstates.
Figure 2(a) shows the energy band and the density of

states of TBG at the magic angle θ = 1.05◦, calculated
by this approach. Here in the following, the origin of
band energy axis is set to the charge neutral point. The
lower panel is the enlarged plot of the zero-energy region

[Castro Neto et al., PRB 2011, Goerbig & Montambaux, 2017]

See Also: Ahn, Park and Yang; Liu, Liu, Dai; Song, Wang, Shi, Li, Fang, Bernevig; 



No-go argument- Flipped Haldane Model

• With same chirality - onsite staggered potential will lead to Dirac 
gap and Chern number +1, -1. 

• Large onsite potential - atomic insulator, incompatible with Chern 
number

Work in the Continuum like for Quantum Hall



Continuum model
• Larger unit cell→ smaller BZone 
• Bistrizer-Macdonald (BM) model 

(2011) 

• Moire “potential” 

• Lattice relaxation: AB stacking 
favored to AA stacking (Carr et 
al. 2019, Nam, Koshino 2017)

24

w0

w1
= ≈ 0.55 − 0.8 (AA vs AB/BA)
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2

derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
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Tj+1 = w0�0 + w1

�
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, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =
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⇤(�r)

D(r) 0
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, D(r) =
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,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
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e
�iq2r +

e
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e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =
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where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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Switch off AA coupling. Only AB coupling

Chiral Symmetry

{�z ⌦ 1,H} = 0

sublattice

α =
w1

2vFkD sin θ/2
Large angle:  α ≈ 0

Magic angle:  α ≈ 0.6



Chiral Model

2

derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.
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CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:
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where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =
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where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
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e
�iq2r +
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e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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Perfectly Flat Bands in the Chiral Model



Absence of Flat Bands in anti-Chiral Model

• Switch off A-B hopping (retain only A-A)



From Flattish to Perfectly Flat Bands in the Chiral Limit

Chiral Symmetry

{�z ⌦ 1,H} = 0sublattice

Becker, Embree, Wittsten,  
Zworski `20

Exactly flat bands 

α =
w1

2v0kDsin(θ/2)

α = 0.586

α = 0.58566355838955
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From Flattish to Perfectly Flat Bands in the Chiral Limit
Tarnopolski, Kruchkov, AV


P. San-Jose, Gonz´alez, and Guinea

Exactly flat bands 
α = 0.586

Tarnopolski, Kruchkov, AV; 

P. Ledwith, Tarnopolsky, Khalaf, AV; 

Jie Wang, Cano, Millis, Liu, Yang. 


Haldane.  


Wavefunctions:

Ψ𝚔(𝚣)
ΨΓ(𝚣)

= e− i
2 𝚔𝚣̄ σ(𝚣 + iℓ2𝚔)

σ(𝚣)
Weierstrass-Haldane 

sigma  function.


Or, ratio of Theta fns.

(Symmetric vs. Landau gauge)

σ(z)

σ(z) = − σ(−z) ,

σ(z + a1,2) = − exp ( 1
2ℓ2

a*1,2(z +
a1,2

2
)) σ(z)

1. There is a zero 

at the origin for Gamma point wfn.

2. Has Chern number =1

Can be seen from uk+G = eiϕk(G)uk



Exactly Flat Bands

• Simpler `zero mode’ equation - 

Usually: . BUT HERE H ψk = E(k) ψk D ψk = 0

D uk = (kx + iky) uk
• Always has solution at Dirac point, 

but flat bands only at magic angles.

Becker, Embree, Wittsten, Zworski `20

Look for exactly zero energy states:

𝒟(r) ψ(r) = 0



Exactly Flat Bands

Flat%band%equation
implies%
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FIG. 2. Magic angle recurrence: a) Fermi velocity (vF =
|@kEk|K,K0) at moire Dirac points as function of ↵ (logarith-
mic scale). The first few magic angles are given by ↵ = 0.586,
2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds
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FIG. 2. Magic angle recurrence: a) Fermi velocity (vF =
|@kEk|K,K0) at moire Dirac points as function of ↵ (logarith-
mic scale). The first few magic angles are given by ↵ = 0.586,
2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds
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SD(r)S�1 =

 
�2i@̄ � 2i(@̄ log ⇢K) 0

h(r) �2i@̄

!
, (11)

where h(r) = ⇢
�1
K (r)( ⇤

K,2)
2
�
2i@̄( ⇤

K,1/ 
⇤
K,2) +

↵(U(�r) � U(r)( ⇤
K,1/ 

⇤
K,2)

2)
�
. From equation

(11) we see that the only possible solution for the first
component is ⌘k,1(r) = 0 [46]. The latest gives us an
important relation between the flat-band wave function
at the Dirac point K and the flat-band wave function at
an arbitrary mBZ point k precisely at the magic angles,

 k,1(r)

 k,2(r)
=
 K,1(r)

 K,2(r)
. (12)

Thus for the second component of the wave function
⌘k(r) we have

@̄⌘k,2(r) = 0 , (13)

where ⌘k,2(r) =  k,1(r)/ K,1(r) =  k,2(r)/ K,2(r),
which obeys the Bloch-periodic boundary conditions

⌘k,2(r+ a1,2) = e
ika1,2⌘k,2(r) , (14)

where a1,2 = 4⇡
3k✓

(±
p
3
2 ,

1
2 ) are two Moiré lattice vectors.

Equation (13) may have a non-trivial solution if only
the entire spinor  K(r) become zero at some point. We
show below that exactly at the angles where vF (↵) = 0,
 K,1(r) and  K,2(r) do both become zero at the point
r0 = 1

3 (a1 � a2) which correspond to BA stacking point
(see Fig. 3). Therefore we can find a meromorphic solu-
tion,

⌘k,2(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

, (15)

where z = x + iy, a1 = (a1)x + i(a1)y, ! = e
i� and

#a,b(z|⌧) is the theta function with rational characteris-
tics a and b (see e.g. Ref.[47]),

#a,b(z|⌧) =
+1X

n=�1
e
i⇡⌧(n+a)2

e
2⇡i(n+a)(z+b)

. (16)

Using the properties of the theta function [47], one can
verify that the meromorphic solution (15) obeys the peri-
odic boundary conditions (14). Thus at the magic angles
the wave functions  k(r) of the exactly flat band read

 k(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

 K(r) . (17)

Note that under this construction, the zeros of  K(r)
exactly cancel zeros of the theta function in the denomi-
nator.
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FIG. 3. (top) Schematic moire pattern with regions referred
to in the text marked. (bottom) Wave function density
⇢K(r) =  †

K K in real space for a single zero mode at the
Dirac point: ⇢K(r) is localized on AA stacking and (exactly
at the magic angles) has zeros on the BA stacking locations.

Therefore, exactly at the magic angles, where
 K(r0) = 0, the wave functions (17) satisfy the zero-
mode equation (9) for all k in mBZ. Thus we showed
that there is an perfectly flat band solution, "0(k) ⌘ 0.
Connection with the vanishing of Fermi velocity. Now

we show that zero Fermi velocity is connected to zero of
 K(r). Analyzing symmetries of the zero-mode opera-
tor D(r) one can check that if  K(r) is a solution to the
equation D(r) K(r) = 0, then  K(R�r) is also a solu-
tion, where R� denotes a counterclockwise rotation on
angle �. Similarly one finds that

D(r± r0)

 
 K,1(R�r± r0)

e
⌥i�

 K,2(R�r± r0)

!
= 0 , (18)

where r0 = 1
3 (a1 � a2). Since at ↵ = 0 we have

 K(r) = (1, 0) this implies for the zero-mode components
at arbitrary ↵

 K,1(R�r± r0) =  K,1(r± r0) , (19)

 K,2(R�r± r0) = e
±i�

 K,2(r± r0) . (20)

The second equation implies that  K,2(r) = 0 at r = ±r0
for arbitrary ↵. Now to relate appearance of zeros in
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FIG. 2. Magic angle recurrence: a) Fermi velocity (vF =
|@kEk|K,K0) at moire Dirac points as function of ↵ (logarith-
mic scale). The first few magic angles are given by ↵ = 0.586,
2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds
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SD(r)S�1 =

 
�2i@̄ � 2i(@̄ log ⇢K) 0

h(r) �2i@̄

!
, (11)

where h(r) = ⇢
�1
K (r)( ⇤

K,2)
2
�
2i@̄( ⇤

K,1/ 
⇤
K,2) +

↵(U(�r) � U(r)( ⇤
K,1/ 

⇤
K,2)

2)
�
. From equation

(11) we see that the only possible solution for the first
component is ⌘k,1(r) = 0 [46]. The latest gives us an
important relation between the flat-band wave function
at the Dirac point K and the flat-band wave function at
an arbitrary mBZ point k precisely at the magic angles,

 k,1(r)

 k,2(r)
=
 K,1(r)

 K,2(r)
. (12)

Thus for the second component of the wave function
⌘k(r) we have

@̄⌘k,2(r) = 0 , (13)

where ⌘k,2(r) =  k,1(r)/ K,1(r) =  k,2(r)/ K,2(r),
which obeys the Bloch-periodic boundary conditions

⌘k,2(r+ a1,2) = e
ika1,2⌘k,2(r) , (14)

where a1,2 = 4⇡
3k✓

(±
p
3
2 ,

1
2 ) are two Moiré lattice vectors.

Equation (13) may have a non-trivial solution if only
the entire spinor  K(r) become zero at some point. We
show below that exactly at the angles where vF (↵) = 0,
 K,1(r) and  K,2(r) do both become zero at the point
r0 = 1

3 (a1 � a2) which correspond to BA stacking point
(see Fig. 3). Therefore we can find a meromorphic solu-
tion,

⌘k,2(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

, (15)

where z = x + iy, a1 = (a1)x + i(a1)y, ! = e
i� and

#a,b(z|⌧) is the theta function with rational characteris-
tics a and b (see e.g. Ref.[47]),

#a,b(z|⌧) =
+1X

n=�1
e
i⇡⌧(n+a)2

e
2⇡i(n+a)(z+b)

. (16)

Using the properties of the theta function [47], one can
verify that the meromorphic solution (15) obeys the peri-
odic boundary conditions (14). Thus at the magic angles
the wave functions  k(r) of the exactly flat band read

 k(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

 K(r) . (17)

Note that under this construction, the zeros of  K(r)
exactly cancel zeros of the theta function in the denomi-
nator.
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FIG. 3. (top) Schematic moire pattern with regions referred
to in the text marked. (bottom) Wave function density
⇢K(r) =  †

K K in real space for a single zero mode at the
Dirac point: ⇢K(r) is localized on AA stacking and (exactly
at the magic angles) has zeros on the BA stacking locations.

Therefore, exactly at the magic angles, where
 K(r0) = 0, the wave functions (17) satisfy the zero-
mode equation (9) for all k in mBZ. Thus we showed
that there is an perfectly flat band solution, "0(k) ⌘ 0.
Connection with the vanishing of Fermi velocity. Now

we show that zero Fermi velocity is connected to zero of
 K(r). Analyzing symmetries of the zero-mode opera-
tor D(r) one can check that if  K(r) is a solution to the
equation D(r) K(r) = 0, then  K(R�r) is also a solu-
tion, where R� denotes a counterclockwise rotation on
angle �. Similarly one finds that

D(r± r0)

 
 K,1(R�r± r0)

e
⌥i�

 K,2(R�r± r0)

!
= 0 , (18)

where r0 = 1
3 (a1 � a2). Since at ↵ = 0 we have

 K(r) = (1, 0) this implies for the zero-mode components
at arbitrary ↵

 K,1(R�r± r0) =  K,1(r± r0) , (19)

 K,2(R�r± r0) = e
±i�

 K,2(r± r0) . (20)

The second equation implies that  K,2(r) = 0 at r = ±r0
for arbitrary ↵. Now to relate appearance of zeros inThis%solution%is%possible%due

to%the%zero%of%the%entire%two%
component%zero>mode%
spinor.%The%zero%appears%
at%BA%%point%exactly%at%the
Magic%angles
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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e.

f.

FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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↵1 ↵2 ↵3 ↵4 ↵5

CS-CM 0.586 2.221 3.75 5.28 6.80

BM-CM 0.606 1.27 1.82 2.65 3.18

U(r) = e�iq1r + ei�e�iq2r + e�i�e�iq3r (1)

T (r) =

0

@ w0U0(r) w1U(r)

w1U⇤(�r) w0U0(r)
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Can#be#viewed#as#Dirac#fermions#in#a#non;abelian
SU(2)#gauge#field
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FIG. 2. Magic angle recurrence: a) Fermi velocity (vF =
|@kEk|K,K0) at moire Dirac points as function of ↵ (logarith-
mic scale). The first few magic angles are given by ↵ = 0.586,
2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds
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2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds

4

SD(r)S�1 =

 
�2i@̄ � 2i(@̄ log ⇢K) 0

h(r) �2i@̄

!
, (11)

where h(r) = ⇢
�1
K (r)( ⇤

K,2)
2
�
2i@̄( ⇤

K,1/ 
⇤
K,2) +

↵(U(�r) � U(r)( ⇤
K,1/ 

⇤
K,2)

2)
�
. From equation

(11) we see that the only possible solution for the first
component is ⌘k,1(r) = 0 [46]. The latest gives us an
important relation between the flat-band wave function
at the Dirac point K and the flat-band wave function at
an arbitrary mBZ point k precisely at the magic angles,

 k,1(r)

 k,2(r)
=
 K,1(r)

 K,2(r)
. (12)

Thus for the second component of the wave function
⌘k(r) we have

@̄⌘k,2(r) = 0 , (13)

where ⌘k,2(r) =  k,1(r)/ K,1(r) =  k,2(r)/ K,2(r),
which obeys the Bloch-periodic boundary conditions

⌘k,2(r+ a1,2) = e
ika1,2⌘k,2(r) , (14)

where a1,2 = 4⇡
3k✓

(±
p
3
2 ,

1
2 ) are two Moiré lattice vectors.

Equation (13) may have a non-trivial solution if only
the entire spinor  K(r) become zero at some point. We
show below that exactly at the angles where vF (↵) = 0,
 K,1(r) and  K,2(r) do both become zero at the point
r0 = 1

3 (a1 � a2) which correspond to BA stacking point
(see Fig. 3). Therefore we can find a meromorphic solu-
tion,

⌘k,2(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

, (15)

where z = x + iy, a1 = (a1)x + i(a1)y, ! = e
i� and

#a,b(z|⌧) is the theta function with rational characteris-
tics a and b (see e.g. Ref.[47]),

#a,b(z|⌧) =
+1X

n=�1
e
i⇡⌧(n+a)2

e
2⇡i(n+a)(z+b)

. (16)

Using the properties of the theta function [47], one can
verify that the meromorphic solution (15) obeys the peri-
odic boundary conditions (14). Thus at the magic angles
the wave functions  k(r) of the exactly flat band read

 k(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

 K(r) . (17)

Note that under this construction, the zeros of  K(r)
exactly cancel zeros of the theta function in the denomi-
nator.
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FIG. 3. (top) Schematic moire pattern with regions referred
to in the text marked. (bottom) Wave function density
⇢K(r) =  †

K K in real space for a single zero mode at the
Dirac point: ⇢K(r) is localized on AA stacking and (exactly
at the magic angles) has zeros on the BA stacking locations.

Therefore, exactly at the magic angles, where
 K(r0) = 0, the wave functions (17) satisfy the zero-
mode equation (9) for all k in mBZ. Thus we showed
that there is an perfectly flat band solution, "0(k) ⌘ 0.
Connection with the vanishing of Fermi velocity. Now

we show that zero Fermi velocity is connected to zero of
 K(r). Analyzing symmetries of the zero-mode opera-
tor D(r) one can check that if  K(r) is a solution to the
equation D(r) K(r) = 0, then  K(R�r) is also a solu-
tion, where R� denotes a counterclockwise rotation on
angle �. Similarly one finds that

D(r± r0)

 
 K,1(R�r± r0)

e
⌥i�

 K,2(R�r± r0)

!
= 0 , (18)

where r0 = 1
3 (a1 � a2). Since at ↵ = 0 we have

 K(r) = (1, 0) this implies for the zero-mode components
at arbitrary ↵

 K,1(R�r± r0) =  K,1(r± r0) , (19)

 K,2(R�r± r0) = e
±i�

 K,2(r± r0) . (20)

The second equation implies that  K,2(r) = 0 at r = ±r0
for arbitrary ↵. Now to relate appearance of zeros in
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FIG. 2. Magic angle recurrence: a) Fermi velocity (vF =
|@kEk|K,K0) at moire Dirac points as function of ↵ (logarith-
mic scale). The first few magic angles are given by ↵ = 0.586,
2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, etc. We clearly
see that the sequence of magic angles follows the approximate
”3/2” rule: the distance between two adjacent ↵ is ”quan-
tized” with approximately 3/2 steps which saturate to 1.5 as
↵ ! 1, see subfigure (b).

The band structure of the Hamiltonian (4) has some
remarkable properties. First, the Hamiltonian is particle-
hole-symmetric, {H,�z ⌦ 1} = 0, which implies the
spectrum to be symmetric with respect to zero energy.
Second, the entire lowest band becomes absolutely flat
("0(k) = 0 for all k in mBZ) at the recurrent values
of ↵ corresponding to the magic angles ✓ of this model
(see Fig. 1). The first magic angle of this model is given
by ↵1 ⇡ 0.586, which corresponds to ✓ ⇡ 1.09� on tak-
ing w1 = 110meV and 2v0kD = 19.81eV. Moreover,
the magic angle sequence in our model reveals a sim-
ple quasiperiodicity in ↵ with period �↵ ' 3/2 (see Fig.
3). However, in the continuum model with w0 6= 0 this
feature is smeared out with increasing w0 (see discus-
sion below). All these remarkable features of the chirally
symmetric continuum model (4) indicate that this model
captures the origin of the magic angles in the most precise
way.

Zero mode equation and Fermi velocity. We start from
the fact that model (4) has two zero modes at the points
K and K

0 of the mBZ for arbitrary ↵. This can be seen
starting from ↵ = 0. In this limit there are clearly four
zero modes for eqn. 4, two each from the Dirac point
in each layer. While the Dirac points in the two lay-
ers di↵er in crystal momentum, the pair of zero modes
of each Dirac point di↵er in their C3 rotation eigenvalue
! = e

i2⇡/3, and !⇤ = e
�i2⇡/3 see e.g. [3]. Thus each zero

mode is uniquely labeled by symmetry eigenvalues. Fur-
thermore, these symmetries commute with the particle-
hole transformation �z ⌦ 1. We can then consider each
zero mode individually. On turning on ↵ gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.

The equation for the zero mode at the K point,

D(r) K(r) = 0 reads in components
 

�2i@̄ ↵U(r)

↵U(�r) �2i@̄

! 
 K,1(r)

 K,2(r)

!
= 0 . (5)

Obviously if  K(r) = ( K,1, K,2)T is a solution of (5),
then �K(r) =  

⇤
K(�r) is a solution to D

⇤(�r)�K(r) = 0.
A general Bloch’s wave function  k(r) with momentum
k in mBZ has the form

 k(r) =
X

m,n

 
amn

bmne
iq1r

!
e
i(Kmn+k)r

, (6)

where Kmn = mb1 + nb2 and b1,2 = q2,3 � q1 are the
two Moiré reciprocal lattice vectors. The K point corre-
sponds to k = 0 and the renormalized Fermi velocity can
be found through the first-order perturbation theory

vF (↵) =
��@k

h�K |Vk|�Ki

h�K |�Ki

��
k=0

, Vk =

 
0 k̄

k 0

!
, (7)

where k, k̄ = (kx±iky)�0 and �K(r) = ( K ,�K)T. Using
now relation �K(r) =  

⇤
K(�r), we find the expression for

the Fermi velocity as a function of ↵,

vF (↵) =
|h 

⇤
K(�r)| K(r)i|

h K | Ki
. (8)

A striking result of this paper is however not just the
vanishing of the Fermi velocity, but the flattening of the
entire lowest band. Below we show that it is possible to
find the absolute flat band solution because of a seem-
ingly unrelated property, that the entire zero mode spinor
at the Dirac point,  K(r) vanishes exactly at the BA

stacking points and this happens precisely at the magic
angles.
Absolutely flat band. We now explain the origin of the

absolutely flat band H�k(r) = "0(k)�k, "0(k) = 0 in
our model. As follows from the Hamiltonian (4), the
appearance of the perfectly flat band at the set of magic
angles implies that equation

D(r) k(r) = 0 (9)

has a solution for arbitrary Bloch’s vector k in mBZ.
As we explained above this equation always has the zero
mode solutions  K(r) at the point k = 0. To relate
solutions of (9) at arbitrary k to the zero-mode  K(r),
we make a transformation to a new wave function ⌘k(r) =
S(r) k(r), with

S(r) =
1

⇢K(r)

 
 K,2(r) � K,1(r)

 
⇤
K,1(r)  

⇤
K,2(r)

!
, (10)

and ⇢K(r) =  
†
K K is the density of the zero mode wave

function. Applying transformation S(r) to the operator
D(r), one finds

4

SD(r)S�1 =

 
�2i@̄ � 2i(@̄ log ⇢K) 0

h(r) �2i@̄

!
, (11)

where h(r) = ⇢
�1
K (r)( ⇤

K,2)
2
�
2i@̄( ⇤

K,1/ 
⇤
K,2) +

↵(U(�r) � U(r)( ⇤
K,1/ 

⇤
K,2)

2)
�
. From equation

(11) we see that the only possible solution for the first
component is ⌘k,1(r) = 0 [46]. The latest gives us an
important relation between the flat-band wave function
at the Dirac point K and the flat-band wave function at
an arbitrary mBZ point k precisely at the magic angles,

 k,1(r)

 k,2(r)
=
 K,1(r)

 K,2(r)
. (12)

Thus for the second component of the wave function
⌘k(r) we have

@̄⌘k,2(r) = 0 , (13)

where ⌘k,2(r) =  k,1(r)/ K,1(r) =  k,2(r)/ K,2(r),
which obeys the Bloch-periodic boundary conditions

⌘k,2(r+ a1,2) = e
ika1,2⌘k,2(r) , (14)

where a1,2 = 4⇡
3k✓

(±
p
3
2 ,

1
2 ) are two Moiré lattice vectors.

Equation (13) may have a non-trivial solution if only
the entire spinor  K(r) become zero at some point. We
show below that exactly at the angles where vF (↵) = 0,
 K,1(r) and  K,2(r) do both become zero at the point
r0 = 1

3 (a1 � a2) which correspond to BA stacking point
(see Fig. 3). Therefore we can find a meromorphic solu-
tion,

⌘k,2(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

, (15)

where z = x + iy, a1 = (a1)x + i(a1)y, ! = e
i� and

#a,b(z|⌧) is the theta function with rational characteris-
tics a and b (see e.g. Ref.[47]),

#a,b(z|⌧) =
+1X

n=�1
e
i⇡⌧(n+a)2

e
2⇡i(n+a)(z+b)

. (16)

Using the properties of the theta function [47], one can
verify that the meromorphic solution (15) obeys the peri-
odic boundary conditions (14). Thus at the magic angles
the wave functions  k(r) of the exactly flat band read

 k(r) =
# ka1

2⇡ � 1
6 ,

1
6�

ka2
2⇡

(z/a1|!)

#� 1
6 ,

1
6
(z/a1|!)

 K(r) . (17)

Note that under this construction, the zeros of  K(r)
exactly cancel zeros of the theta function in the denomi-
nator.

AB AA BA

1

2

3

⇢K(r)First magic angle

↵1 = 0.586

zero

r0

a2 a1

AB AA BA

FIG. 3. (top) Schematic moire pattern with regions referred
to in the text marked. (bottom) Wave function density
⇢K(r) =  †

K K in real space for a single zero mode at the
Dirac point: ⇢K(r) is localized on AA stacking and (exactly
at the magic angles) has zeros on the BA stacking locations.

Therefore, exactly at the magic angles, where
 K(r0) = 0, the wave functions (17) satisfy the zero-
mode equation (9) for all k in mBZ. Thus we showed
that there is an perfectly flat band solution, "0(k) ⌘ 0.
Connection with the vanishing of Fermi velocity. Now

we show that zero Fermi velocity is connected to zero of
 K(r). Analyzing symmetries of the zero-mode opera-
tor D(r) one can check that if  K(r) is a solution to the
equation D(r) K(r) = 0, then  K(R�r) is also a solu-
tion, where R� denotes a counterclockwise rotation on
angle �. Similarly one finds that

D(r± r0)

 
 K,1(R�r± r0)

e
⌥i�

 K,2(R�r± r0)

!
= 0 , (18)

where r0 = 1
3 (a1 � a2). Since at ↵ = 0 we have

 K(r) = (1, 0) this implies for the zero-mode components
at arbitrary ↵

 K,1(R�r± r0) =  K,1(r± r0) , (19)

 K,2(R�r± r0) = e
±i�

 K,2(r± r0) . (20)

The second equation implies that  K,2(r) = 0 at r = ±r0
for arbitrary ↵. Now to relate appearance of zeros inThis%solution%is%possible%due

to%the%zero%of%the%entire%two%
component%zero>mode%
spinor.%The%zero%appears%
at%BA%%point%exactly%at%the
Magic%angles
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2

derived, if it is known at one point in the Brillouin
Zone. An interesting mathematical aspect here is that
the wave function ratios are constructed from meromor-
phic doubly-periodic functions that are ratios of theta
functions, similar to those appearing in the Quantum
Hall E↵ect on the torus [44]. The CS-CM has a single
coupling constant ↵ = w1/(2v0kD sin(✓/2)) where v0

and kD are the bare velocity and crystal momentum
of graphene’s Dirac fermions. We show that pertur-
bation theory to high orders (up to ↵

8) matches with
numerical results very accurately near the first magic
angle. The sequence of magic angles that we find ↵ =
0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345,...
reveals a remarkable asymptotic quasi-periodicity of
�↵ ' 3/2. Comparing with the reported magic angles
for the BM-CM, we see significant di↵erences except for
the first magic angle, see Table I. We finally turn on the
AA-coupling and study numerically how the bandwidth
and gap evolves and discuss the possibility of studying
the second magic angle in experiments.

Continuum model for Twisted Bilayer Graphene. The
continuum model describing a single valley of TBG con-
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
†(r) �iv0��✓/2r

!
, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
i✓
4 �z , r = (@x, @y) and

T (r) =
3X

j=1

Tje
�iqjr (2)

with q1 = k✓(0,�1), q2,3 = k✓(±
p
3/2, 1/2) and

Tj+1 = w0�0 + w1

�
cos(�j)�x + sin(�j)�y

�
, (3)

where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =

 
0 D

⇤(�r)

D(r) 0

!
, D(r) =

 
�2i@̄ ↵U(r)

↵U(�r) �2i@̄

!
,

(4)

where @̄ = 1
2 (@x + i@y) and U(r) = e

�iq1r + e
i�
e
�iq2r +

e
�i�

e
�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with w0 = 0 : in this model, the absolutely flat band ap-
pears at exact values of magic angles ↵ = 0.586, 2.221, 3.751,
etc, where ↵ = w1/(v0k✓). Energy is given in dimensionless
units " = ↵(E/w1). On subfigures (a-c), the band is numer-
ically flat up to accuracy 10�16. (d) Moiré Brillouin Zone.
(e-f): The bandwidth for the lowest two bands vs ↵. The
band width drops to exact zero at the set of magic angles. At
the same points, we observe the maxima of the band gap.

TABLE I. Comparison of magic angles in continuum model
with w0 = 0 (first row) and with w0 = w1 (second row). Only
the first magic angles correspond.

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM (here) 0.586 2.221 3.75 5.28 6.80

BM-CM (Ref. [35]) 0.606 1.27 1.82 2.65 3.18

siders two layers of graphene described by an e↵ective
Dirac fields near K,K

0 points of the moire (mini) Bril-
louin Zone, each rotated by an angle ±✓/2, and coupled
through a Moiré potential T (r) [3, 14, 35, 39]:

H =

 
�iv0�✓/2r T (r)

T
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, (1)

where �✓/2 = e
� i✓

4 �z (�x,�y)e
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T (r) =
3X
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with q1 = k✓(0,�1), q2,3 = k✓(±
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where � = 2⇡/3, k✓ = 2kD sin(✓/2) is the Moiré mod-
ulation vector and kD = 4⇡/(3a0) is the magnitude of
the Dirac wave vector, where a0 is the lattice constant
of monolayer graphene. The Hamiltonian (1) acts on the
spinor �(r) = ( 1,�1, 2,�2)T and the indices 1, 2 rep-
resent the graphene layer. Here w0 is responsible for the
AA coupling and w1 is for AB and AB couplings.

Chirally symmetric continuum model. In this Letter,
we study a model obtained from Hamiltonian (1) by set-
ting w0 = 0 [45]. Note, one can rotate the spinors to
eliminate the rotation in the kinetic terms �±✓/2 ! � in
the absence of the w0 term. The dimensionless Hamilto-
nian now acts on a spinor �(r) = ( 1, 2,�1,�2)T, and
can be compactly written in the form

H =
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�iq3r. The Hamiltonian H has only one dimension-

less parameter ↵ = w1/(v0k✓) which fully controls the
physics of the system. A similar idea of switching o↵
the parameter w0 was investigated in Ref.[43]. It was ar-
gued there that the Hamiltonian (4) can be represented
as H = �(�ir + ↵A) and viewed as the Hamiltonian
for Dirac fermions propagating in a background SU(2)
non-Abelian field A.
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I. MAGIC ANGLES

↵1 ↵2 ↵3 ↵4 ↵5

CS-CM 0.586 2.221 3.75 5.28 6.80

BM-CM 0.606 1.27 1.82 2.65 3.18

U(r) = e�iq1r + ei�e�iq2r + e�i�e�iq3r (1)

T (r) =

0

@ w0U0(r) w1U(r)

w1U⇤(�r) w0U0(r)

1

A (2)

Can#be#viewed#as#Dirac#fermions#in#a#non;abelian
SU(2)#gauge#field
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 Gives: 
perfectly flat bands at a series 

of magic angles.
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D(r) 0

◆✓
0

 B(r)

◆
= 0

5

 K(r) to zeros of the renormalized Fermi velocity, we
notice that the Fermi velocity is proportional to an inte-
gral of motion of the operator D(r)[48]

v(↵) =  K,1(r) K,1(�r) +  K,2(r) K,2(�r) , (21)

where v(↵) does not depend on coordinates and from (8)
we see that vF (↵) ⇠ v(↵). Using that  K,2(±r0) = 0 we
find

vF (↵) ⇠  K,1(r0) K,1(�r0) . (22)

And one can see from the equations of motion near the
point r = �r0 that  K,1(�r0) can not be zero. Therefore
vF (↵) = 0 means that  K,1(r0) = 0 and vice versa. Thus
we finally obtain that vF (↵) = 0 implies the existence of
an absolutely flat band, whose wave functions are given
by (17).

The appearance of zeros in vF (↵) is not surprising,
since this is just a real function of a single parameter.
By varying this parameter one hopes that vF (↵) crosses
zero at some value of ↵. To check analytically that this
actually happens in our model near ↵1 ⇡ 0.586 we use
perturbation theory in ↵.

Perturbation theory in ↵. K point. One can analyze
the zero mode equation (5) using perturbation theory in
↵, namely the spinor  K(r) should have the form

 K(r) =

 
 K,1

 K,2

!
=

 
1 + ↵

2
u2 + ↵

4
u4 + . . .

↵u1 + ↵
3
u3 + . . .

!
.

(23)

In general we can find un(r) step by step to arbitrary
order in ↵. Limiting ourselves to the first lowest terms
we find

u1 = �i(eiq1r + e
iq2r + e

iq3r) ,

u2 =
i
p
3
e
�i�(e�ib1r + e

ib2r + e
i(b1�b2)r) + c.c. (24)

And perturbation formula for the renormalized Fermi ve-
locity reads

vF (↵) =
1� 3↵2 + ↵

4
�

111↵6

49 + 143↵8

294 + . . .

1 + 3↵2 + 2↵4 + 6↵6

7 + 107↵8

98 + . . .
. (25)

This expression gives for the first magic angle ↵1 ⇡ 0.587,
which is very close to the precise value ↵1 ⇡ 0.586.
Therefore the perturbation theory for small ↵ quanti-
tively explaining the appearance of ↵1. Note that up to
↵
2, vF ⇡ (1 � 3↵2)/(1 + 6↵2) was reported in a model

with w0 = w1 [35].
� point. In our notations the � point corresponds to

k = q1 in (6). The symmetries of the Hamiltonian (4)
imply that ��(r) = �↵�x �(r), where �↵ = ±1, more-
over one can also obtain that  �,2(r) = iµ↵ �,1(�r),
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FIG. 4. Band gap evolution in the flow from CS-CM (w0 = 0)
to BM-CM (w0 = w1) model. The first magic angle (red dots)
remains stable throughout all the region, ↵1 ⇡ 0.58, while
both the second magic angle (blue dots) and the correspond-
ing band gap experiences oscillations and discontinuities. The
numbers with the dotted lined signify the local values of an
approximate magic angle for the give w0/w1.

where µ↵ = ±1. Using the last equality and the equa-
tion (8) one immediately finds that the velocity at the
� point is exactly zero, which means that the � point is
the extremum for all bands. Finally using all symmetry
relations we find that the whole spectrum at the � point
is characterized by two equations

2@̄ �,1 ⌥ ↵U(r) �,1(�r) = "� �,1(�x, y) , (26)

where the ”�” captures all odd magic angles and ”+” all
even. One can study the equations (26) perturbatively
for small ↵ and find for the energy at the � point (which
equals to half-bandwidth [49])

"� = 1� 2↵+
↵
2

3
+

2↵3

9
+

5↵4

54
+ . . . , (27)

and the wave function

 �,1(r) = U(�r) +
↵

3
U(2r) +

↵
2

18

�
(2� e

i�)U(�
p

7R�r)

+ (2� e
�i�)U(�

p

7R��r)� 4U(2r)
�
+ . . . ,

(28)

where R�r is a counterclockwise rotation on angle � with
tan � =

p
3/5. We see that the equation (27) gives ↵1 ⇡

0.585. Thus both in terms of Fermi velocity at Dirac
point K and the badwidth (doubled energy at � point)
the perturbation theory converges to precise numerical
↵1 = 0.586.
Turning on w0. We turn on the w0 terms in the T (r)

matrix (3), but still neglect relative rotations in the ki-
netic terms �±✓/2 ! �. Then the dimensionless Hamil-
tonian has the form

Hw0 = H+ (w0/w1)�0 ⌦ V (r) , (29)

5

 K(r) to zeros of the renormalized Fermi velocity, we
notice that the Fermi velocity is proportional to an inte-
gral of motion of the operator D(r)[48]

v(↵) =  K,1(r) K,1(�r) +  K,2(r) K,2(�r) , (21)

where v(↵) does not depend on coordinates and from (8)
we see that vF (↵) ⇠ v(↵). Using that  K,2(±r0) = 0 we
find

vF (↵) ⇠  K,1(r0) K,1(�r0) . (22)

And one can see from the equations of motion near the
point r = �r0 that  K,1(�r0) can not be zero. Therefore
vF (↵) = 0 means that  K,1(r0) = 0 and vice versa. Thus
we finally obtain that vF (↵) = 0 implies the existence of
an absolutely flat band, whose wave functions are given
by (17).

The appearance of zeros in vF (↵) is not surprising,
since this is just a real function of a single parameter.
By varying this parameter one hopes that vF (↵) crosses
zero at some value of ↵. To check analytically that this
actually happens in our model near ↵1 ⇡ 0.586 we use
perturbation theory in ↵.

Perturbation theory in ↵. K point. One can analyze
the zero mode equation (5) using perturbation theory in
↵, namely the spinor  K(r) should have the form

 K(r) =
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 K,2

!
=

 
1 + ↵

2
u2 + ↵

4
u4 + . . .

↵u1 + ↵
3
u3 + . . .

!
.

(23)

In general we can find un(r) step by step to arbitrary
order in ↵. Limiting ourselves to the first lowest terms
we find

u1 = �i(eiq1r + e
iq2r + e

iq3r) ,

u2 =
i
p
3
e
�i�(e�ib1r + e

ib2r + e
i(b1�b2)r) + c.c. (24)

And perturbation formula for the renormalized Fermi ve-
locity reads

vF (↵) =
1� 3↵2 + ↵

4
�

111↵6

49 + 143↵8

294 + . . .

1 + 3↵2 + 2↵4 + 6↵6

7 + 107↵8

98 + . . .
. (25)

This expression gives for the first magic angle ↵1 ⇡ 0.587,
which is very close to the precise value ↵1 ⇡ 0.586.
Therefore the perturbation theory for small ↵ quanti-
tively explaining the appearance of ↵1. Note that up to
↵
2, vF ⇡ (1 � 3↵2)/(1 + 6↵2) was reported in a model

with w0 = w1 [35].
� point. In our notations the � point corresponds to

k = q1 in (6). The symmetries of the Hamiltonian (4)
imply that ��(r) = �↵�x �(r), where �↵ = ±1, more-
over one can also obtain that  �,2(r) = iµ↵ �,1(�r),
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FIG. 4. Band gap evolution in the flow from CS-CM (w0 = 0)
to BM-CM (w0 = w1) model. The first magic angle (red dots)
remains stable throughout all the region, ↵1 ⇡ 0.58, while
both the second magic angle (blue dots) and the correspond-
ing band gap experiences oscillations and discontinuities. The
numbers with the dotted lined signify the local values of an
approximate magic angle for the give w0/w1.

where µ↵ = ±1. Using the last equality and the equa-
tion (8) one immediately finds that the velocity at the
� point is exactly zero, which means that the � point is
the extremum for all bands. Finally using all symmetry
relations we find that the whole spectrum at the � point
is characterized by two equations

2@̄ �,1 ⌥ ↵U(r) �,1(�r) = "� �,1(�x, y) , (26)

where the ”�” captures all odd magic angles and ”+” all
even. One can study the equations (26) perturbatively
for small ↵ and find for the energy at the � point (which
equals to half-bandwidth [49])

"� = 1� 2↵+
↵
2

3
+

2↵3

9
+

5↵4

54
+ . . . , (27)

and the wave function

 �,1(r) = U(�r) +
↵

3
U(2r) +

↵
2

18

�
(2� e

i�)U(�
p

7R�r)

+ (2� e
�i�)U(�

p

7R��r)� 4U(2r)
�
+ . . . ,

(28)

where R�r is a counterclockwise rotation on angle � with
tan � =

p
3/5. We see that the equation (27) gives ↵1 ⇡

0.585. Thus both in terms of Fermi velocity at Dirac
point K and the badwidth (doubled energy at � point)
the perturbation theory converges to precise numerical
↵1 = 0.586.
Turning on w0. We turn on the w0 terms in the T (r)

matrix (3), but still neglect relative rotations in the ki-
netic terms �±✓/2 ! �. Then the dimensionless Hamil-
tonian has the form

Hw0 = H+ (w0/w1)�0 ⌦ V (r) , (29)

Perturbation Theory:
u1(r0) = 0;

u2(r0) = |u1(r0) |2 − 3



Chiral Model and Quantum Hall
• Exactly flat bands are eigenstates of chirality (live on a. 

Single sub lattice A or B) 

• They have opposite Chern number 

• Staggered Potential + SPONTANEOUS spin & valley 
polarization=> Chern Insulator

C= +1

C= -1

A
B

Linear combination of bands
Chern =±1; 

Sublattice polarized
Valley K

C2𝒯

|A⟩ + |B⟩

|A⟩ − |B⟩



 ν = 3

C= -1C= +1

Integer Chern Insulator



Real Magic Angle Graphene

BAND GAP EVOLUTION
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CHIRAL: 0 < w0/w1 < 1 BM

First magic angle  
Connected to chiral limit.

Tarnopolski, Kruchkov, AV 1808.05250

Geometry

κ = 0

Nearly uniform Berry curvature



Alternating Twist Multilayers
• Other systems with C2 symmetry 

Jong	Yeon	Lee Eslam Khalaf

Khalaf,	Kruchkov,	Tarnopolsky,	AV,	1901.10485

2

φ =
1 + 5

2

Larger magic angles!

Flat band+Dirac

Alternating twist sandwich

Magic angle = 2 1.1o ∼ 1.55o

Carr et al. stability `19

Magic angle = 
1 + 5

2
1.1o ∼ 1.78o



Deconstructing n=3, 4, 5
DiracTBG -√2

TBG-φ TBG-1/φ

DiracTBG: √3                TBG            

                                                                                                                                

                                                                                                                                



ASIDE: Alternating-twist multilayer graphene

• Alternating twist: 

• Magic angles 
simply related to 
the bilayer case.

Khalaf,	Kruchkov,	Tarnopolsky,	AV,	1901.10485

2

φ =
1 + 5

2

2 cos
πk

n + 1

Jong	Yeon	Lee Eslam Khalaf



Displacement Field Effect

n=2 n=3 n=4 n=5



OUTLINE

• Lecture 1 - Preliminaries, the chiral model, wave 
functions, from bilayer to n=3,4,5.. 

• Lecture 2 - Correlated Insulators - exact solutions, 
Hartree Fock, topology and  model.


• Lecture 3 - Superconductivity - disordered  model.


• Lecture 4 - Fractional Chern insulators in magic angle 
graphene

σ

σ



Wbare ~ 8 meV

3

FIG. 2. (a) Energy band and the density of states of TBG
at θ = 1.05◦, where the lower panel is the enlarged plot of the
zero-energy region. The black solid line and red dashed line
represent the energy bands of ξ = ± valleys, respectively. (b)
Contour plots of E1(k) and E2(k) for the valley ξ = +. The
dashed contour corresponds to the filling of two electrons /
holes per super cell (n/n0 = ±2).

for the basis of (A1, B1, A2, B2) as

H(ξ) =

(

H1 U †

U H2

)

. (1)

Here Hl(l = 1, 2) is the intralayer Hamiltonian of layer
l, which is given by the two-dimensional Weyl equation

centered at K(l)
ξ point,

Hl = −!v[R(±θ/2)(k−K
(l)
ξ )] · (ξσx,σy), (2)

where ± is for l = 1 and 2, respectively. We take !v/a =
2.1354 eV.34 U is the effective interlayer coupling given
by34–36

U =

(

UA2A1 UA2B1

UB2A1 UB2B1

)

=

(

u u′

u′ u

)

+

(

u u′ω−ξ

u′ωξ u

)

eiξG
M
1 ·r

+

(

u u′ωξ

u′ω−ξ u

)

eiξ(G
M
1 +GM

2 )·r, (3)

where ω = e2πi/3. Here u and u′ describe the amplitudes
of diagonal and off-diagonal terms, respectively, in the
sublattice space. The effective models in the previous
studies34–36 assume u = u′, which corresponds to a flat
TBG in which the interlayer spacing d is constant ev-
erywhere. On the other hand, several theoretical studies
predicted that the optimized lattice structure of TBG is
actually corrugated in the out-of-plane direction, in such
a way that d is the widest in AA stacking region and
the narrowest AB / BA stacking region.41–44 Here we in-
corporate the corrugation effect as a difference between
u = 0.0797eV and u′ = 0.0975eV in the effective model,
of which detailed derivation is presented in the Appendix
A. As we show in the following, the difference between u
and u′ introduces energy gaps between the lowest bands
and the excited bands, in a qualitative agreement with
the experimental observation.1,2,37 It was found that the
energy gaps isolating the lowest nearly-flat bands are also
caused by the in-plane distortion.38

The calculation of the energy bands and the eigenstates
is done in the k-space picture. For a single Bloch vector
k in the moiré Brillouin zone, the moiré interlayer cou-
pling hybridizes the graphene’s eigenstates at q = k+G,
where G = m1G

M
1 +m2G

M
2 and m1 and m2 are integers.

Therefore the eigenstate is written as

ψX
nk(r) =

∑

G

CX
nk(G)ei(k+G)·r, (4)

where X = A1, B1, A2, B2 is the sublattice index, n is
the band index and k is the Bloch wave vector in the
moiré Brillouin zone. As the low-energy states are ex-
pected to be dominated by the individual graphenes’
eigenstates near the original Dirac points, we pick up
q’s inside the cut-off circle |q − q0| < qc, where q0 is

taken as the midpoint between K
(1)
ξ and K

(2)
ξ , and qc is

set to 4GM (GM = |GM
1 | = |GM

2 |). Since the intervalley
coupling can be neglected, the calculation is done inde-
pendently for each of ξ = ± as we discussed previously.
We then numerically diagonalize the Hamiltonian within
the limited wave space inside the cut-off circle and obtain
the eigenenergies and eigenstates.
Figure 2(a) shows the energy band and the density of

states of TBG at the magic angle θ = 1.05◦, calculated
by this approach. Here in the following, the origin of
band energy axis is set to the charge neutral point. The
lower panel is the enlarged plot of the zero-energy region

Koshino et al

Gap ~ 30 meV
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FIG. 2. (a) Energy band and the density of states of TBG
at θ = 1.05◦, where the lower panel is the enlarged plot of the
zero-energy region. The black solid line and red dashed line
represent the energy bands of ξ = ± valleys, respectively. (b)
Contour plots of E1(k) and E2(k) for the valley ξ = +. The
dashed contour corresponds to the filling of two electrons /
holes per super cell (n/n0 = ±2).

for the basis of (A1, B1, A2, B2) as

H(ξ) =

(

H1 U †

U H2

)

. (1)

Here Hl(l = 1, 2) is the intralayer Hamiltonian of layer
l, which is given by the two-dimensional Weyl equation

centered at K(l)
ξ point,

Hl = −!v[R(±θ/2)(k−K
(l)
ξ )] · (ξσx,σy), (2)

where ± is for l = 1 and 2, respectively. We take !v/a =
2.1354 eV.34 U is the effective interlayer coupling given
by34–36

U =

(

UA2A1 UA2B1

UB2A1 UB2B1

)

=
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u u′

u′ u
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+
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2 )·r, (3)

where ω = e2πi/3. Here u and u′ describe the amplitudes
of diagonal and off-diagonal terms, respectively, in the
sublattice space. The effective models in the previous
studies34–36 assume u = u′, which corresponds to a flat
TBG in which the interlayer spacing d is constant ev-
erywhere. On the other hand, several theoretical studies
predicted that the optimized lattice structure of TBG is
actually corrugated in the out-of-plane direction, in such
a way that d is the widest in AA stacking region and
the narrowest AB / BA stacking region.41–44 Here we in-
corporate the corrugation effect as a difference between
u = 0.0797eV and u′ = 0.0975eV in the effective model,
of which detailed derivation is presented in the Appendix
A. As we show in the following, the difference between u
and u′ introduces energy gaps between the lowest bands
and the excited bands, in a qualitative agreement with
the experimental observation.1,2,37 It was found that the
energy gaps isolating the lowest nearly-flat bands are also
caused by the in-plane distortion.38

The calculation of the energy bands and the eigenstates
is done in the k-space picture. For a single Bloch vector
k in the moiré Brillouin zone, the moiré interlayer cou-
pling hybridizes the graphene’s eigenstates at q = k+G,
where G = m1G

M
1 +m2G

M
2 and m1 and m2 are integers.

Therefore the eigenstate is written as

ψX
nk(r) =

∑

G

CX
nk(G)ei(k+G)·r, (4)

where X = A1, B1, A2, B2 is the sublattice index, n is
the band index and k is the Bloch wave vector in the
moiré Brillouin zone. As the low-energy states are ex-
pected to be dominated by the individual graphenes’
eigenstates near the original Dirac points, we pick up
q’s inside the cut-off circle |q − q0| < qc, where q0 is

taken as the midpoint between K
(1)
ξ and K

(2)
ξ , and qc is

set to 4GM (GM = |GM
1 | = |GM

2 |). Since the intervalley
coupling can be neglected, the calculation is done inde-
pendently for each of ξ = ± as we discussed previously.
We then numerically diagonalize the Hamiltonian within
the limited wave space inside the cut-off circle and obtain
the eigenenergies and eigenstates.
Figure 2(a) shows the energy band and the density of

states of TBG at the magic angle θ = 1.05◦, calculated
by this approach. Here in the following, the origin of
band energy axis is set to the charge neutral point. The
lower panel is the enlarged plot of the zero-energy region

Correlation Effects in Twisted Bilayer Graphene
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Chiral Limit Wavefunctions

C= +1

C= -1

A
B

Linear combination of bands
Chern =±1; 

Sublattice polarized
Valley K

C2𝒯

|A⟩ + |B⟩

|A⟩ − |B⟩

Many special properties: 

(i) Chern number+ sub-lattice polarized
 ψA(x, y) =
ψK(x, y)

θ1(
z − z0

a1
|ω)

f(x + iy)

Apply C2T symmetry - same valley opposite Chern number, opposite sublattice.

H = H0 + ∑ V(x − x′ )ρ(x)ρ(x′ )

Prefers band basis Prefers polarizing electrons,

sublattice basis



Chiral Limit Wavefunctions

C= +1

C= -1

A
B

Chern =±1; 
Sublattice polarized

Valley K

C2𝒯

Many special properties: 

(i) Chern number+ sub-lattice polarized
 ψA(x, y) =
ψK(x, y)

θ1(
z − z0

a1
|ω)

f(x + iy)

Apply C2T symmetry - same valley opposite Chern number, opposite sublattice.

C= +1
K, A

C= -1
K, B

Valley K

ρ(x) = ∑
a=A,B

c†
a(x)ca(x)

c†
a(x) = u(+)

a (x)c†
+ + u(−)

a (x)c†
− Sublattice polarized:

Wfns.
ρ = ρC=+1 + ρC=−1



Interactions

ρ(q) = ∑
k∈BZ

c†
k Λq(k)ck+q

Form factor - wave functions of flat bands -plays a key role

PT

Screened 
Coulomb

Kang, Vafek PRL 2019: SU(4) 
Bultnick, Khalaf et al. arXiv:1911.02045
 



Flavor Ordered Insulator

arXiv:1911.02045 (PRX 2020)



Correlated Insulators - Ideal Limit

Density:
ρ ≈ ρC=+1 + ρC=−1

Ba
nd

 D
is
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rs
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n

w0/w1

Realistic

Ideal 
U(4)xU(4)



Simplified Model - Spinless TBG

Density: ρ ≈ ρC=+1 + ρC=−1

U(2) U(2)

(Spinless Model)
 ν = ± 2Or
 No Dispersion & Chiral limit:

• Family of exact ground states  - generalized 
ferromagnets. Fill Chern Bands. 

Argument: 

Vq≥0 and 
δρq |Ψ⟩ = 0



Ground States of Ideal Model

Valley polarized

Valley Hall

Psuedo-Spin Psuedo-Spin

Q+ = 1 − |z+⟩⟨z+ | = σ ⋅ ̂n+

Q− = 1 − |z−⟩⟨z− | = σ ⋅ ̂n−

̂n+ = ̂n− = − ̂z

̂n+ = − ̂n− = − ̂z



Ground States of Ideal Model

• Intervalley coherent (IVC) states break valley U(1): translation 
symmetry at graphene scale. 

K-IVC

Psuedo-Spin Psuedo-Spin

|K, A⟩ + |K′ , B⟩

|K, A⟩ − |K′ , B⟩

|K, B⟩ + |K′ , A⟩

|K, B⟩ − |K′ , A⟩

̂n+ = ̂n− = − ̂x



Ground State of Chiral Model- 
Generalized Ferromagnet

• Family of exact ground states  - Intervalley coherent states 

break valley U(1): translation symmetry at graphene scale. 

Intervalley-Coherent (IVC)

T-IVC

Psuedo-Spin Psuedo-Spin

|K, A⟩ + |K′ , B⟩

|K, A⟩ − |K′ , B⟩

|K, B⟩ + |K′ , A⟩

|K, B⟩ − |K′ , A⟩



Ground State of Chiral Model- 
Generalized Ferromagnet

Q = ΔRτx + ΔIτy

Q = σx (ΔRτx + ΔIτy)

Q = σy (ΔRτx + ΔIτy)

Some IVCs allowed and others ruled out

CDW

T-IVC

K-IVC

Sublattice (A/B)

Valley (K/K’)

σz

τz



Including Interactions
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Breaking the Degeneracy
Dispersion:  

Favors states that can fluctuate.

Q = σy (ΔRτx + ΔIτy)K-IVC

Q = σzValley Hall

Jn+ ⋅ n−

Antiferro-psuedospin coupling

J~t2/V~1-2 meV
Superexchange

J~ 4t2/U
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Breaking the Degeneracy



Breaking the Degeneracy
Dispersion:  

Favors states that can fluctuate.

Q = σy (ΔRτx + ΔIτy)K-IVC

Q = σzValley Hall

Away from Chiral Limit: 
(Retains a different U(2) symmetry) 

Q = σy (ΔRτx + ΔIτy)K-IVC

Q = τzValley polarized



Ground State - Kramers IVC
Both perturbations pick the same state 

Unfrustrated - 
Q = σy (ΔRτx + ΔIτy)K-IVC

K-IVC

θ = 1.05o w0 = 80meV; w1 = 110meV; ϵ = 7

Hartree Fock Numerics-Confirms This Picture



Hartree Fock & DMRG Numerics 
-Confirms This Picture

Q = σy (ΔRτx + ΔIτy)θ = 1.05o w0 = 80meV; w1 = 110meV; ϵ = 7

Competing state - nematic semimetal. 


Shang Liu et al.  arXiv:1905.07409

Kang& Vafek `19


Parker et al.  arXiv:2012.09885

Bultnick et al. arXiv:1911.02045
Kang and Vafek `19

K-IVC

Strain

https://arxiv.org/abs/1905.07409
https://arxiv.org/abs/2012.09885


U(1)valley spontaneously broken - 

Goldstone modes (lattice translation)


Kramers IVC - Properties
Q = σy (ΔRτx + ΔIτy)K-IVC

𝒯′ 2 = − 1

Involves opposite Chern number band

Nontrivial Z2 topology! 

“Spontaneous” topological insulator

(Topological “Mott” Insulator - Raghu, Qi, Honerkamp, Zhang)

Same symmetries as topological insulator 

*Chakravarty, Laughlin, Morr, Nayak.  Zhu, Aji, Varma.

Spontaneously breaks

Current pattern*

Edge states? Requires `smooth’ edge or spin-valley locking

E

K

v ∼ 104m/sec



Flat Band Topology and Flavor 
Magnetism

Balents et al 
NP `20

C=+1 C=-1

̂n+ = − ̂n−
↑
↓{



Generalized Flavor Ferromagnets 

Eslam Khalaf, Bul-nck, AV, Zaletel arxiv:2009.14827 
Kang and Vafek arXiv:2009.09413 

Kumar, Xie,  MacDonald arXiv:2010.05946 
Bernevig, Lian, Cowsik; Xie,  Regnault,  Song 

arXiv:2009.14200

EK, Bultinck, Vishwanath, Zaletel arxiv:2009.14827

Balents et al 
NP `20

Q+ = 4 − ∑ |z+
filled⟩⟨z+

filled |

Q− = 4 − ∑ |z−
filled⟩⟨z−

filled |

Generalized sigma model



OUTLINE

• Lecture 1 - Preliminaries, the chiral model, wave 
functions, from bilayer to n=3,4,5.. 

• Lecture 2 - Correlated Insulators - exact solutions, 
Hartree Fock, topology and  model.


• Lecture 3 - Superconductivity - disordered  model.


• Lecture 4 - Fractional Chern insulators in magic angle 
graphene

σ

σ



Strong Coupling Approach 
to Superconductivity in TBG

^

"

±
"
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g
Theory

•

*
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Quantum Hall Ferromagnet and Skyrmions

• Quantum Hall Ferromagnet 
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A spin-degenerate Landau level

Cheapest charge excitation is the Skyrmion

Δ#
<latexit sha1_base64="JPH0P+eqQF1JTWpiRYHwM/BwuTs="></latexit>

Theory: Sondhi, Karlhede, Kivelson, Rezayi; Lee & Kane

Experiments: NMR - Barrett et al.  


STM - Liu…Zaletel, Yazdani.

Schütte&Garst

ESkx 

=8πρ

ESkx = 8πρs =
Δ
2

Skyrmions are Charged

arXiv:2109.11555 



What is Fundamental?

Electron -> ferromagnet 

Ferromagnet -> electron 

"
<latexit sha1_base64="2pdSTo6N4yjUEIz41+gSY/5HSfs="></latexit>

A spin-degenerate Landau level

Δ#
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Tony Skyrme



Skyrmions in Magic Angle Graphene?

Jn+ ⋅ n−Antiferro-psuedospin coupling J~h2/V~1-2 meV

Charge 2e Skyrmion

Boson


Pairing due to `J’


Repelled by Coulomb 

But attracted by J


An all electron mechanism? 



Doping the Insulator
• Use microscopically obtained values of parameters to: 

• Compare energy of skyrmions to 1 particle band gap 

• `Inertia’ of skyrmions- sets condensation temperature.

E =
ρ
2 [(∇n+)2 + (∇n−)2] + Jn+ ⋅ n− ESkx

Δph

1/2

Larger  

Realistic 

*Neglects anisotropies, fermion dispersion



Phase Diagram & Stiffness

Solve using large-N CPN 

μ
b
π

EK, Chatterjee, Bultinck, Zaletel, Vishwanath arXiv:2004.00638 

g

µ

K
I
V
C

L[n] = ⇢n(rn)2 + �n(@tn)
2 � µ

2e

4⇡
n · @xn⇥ @yn

+VCoulomb[n]

|ψ⟩ = z1 |K, A⟩ + z2 |K′ , B⟩

Rewrite in terms of CP1 fields,

Note ambiguity in overall phase.

∇ × a = b =
1
2

̂n ⋅ ∂x ̂n × ∂y ̂n

g

H

⟨z
⟩

≠
0

Dual “Meissner”

where

Superfluid Tc? Coefficient of   (∂ta)2/2ρs

A Dual Representation:



Phase Diagram & Stiffness
Solve using large-N CPN 

μ
b
π

EK, Chatterjee, Bultinck, Zaletel, Vishwanath arXiv:2004.00638 

Numerical verification of skyrmion
mechanism 

Chatterjee et al. arxiv:2010.01144

J~2meV

J. Park, Y. Cao … Pablo `20

R

Numerical DMRG evidence - Shubhayu’s talk

g

µ

K
I
V
C

ℒ = | (∂μ − iαμ)w |2 + iAv ∧ dα
Δ = w*1 w2



Skyrmion Properties

- Khalaf, Chatterjee, Bultinc, Zaletel, AV arxiv: 2004.00638

1
m

=
∂2E
∂P2

∝
∂2V
∂r2

∼ J

Tc ∼ νJ

Skyrmion -antiskyrmion pair. 

• Effective Mass

Individually - experience opposite Magnus dynamics.

Together - inertial dynamics. 

What is effective mass?

ℒ =
1
2

(r1 ∧ ·r1 − r2 ∧ ·r2) − V(r1 − r2)

ℒ[R =
r1 + r2

2
, r = r1 − r2] = r ∧ ·R − V(r)

V(r) =
J
2

r2

Sets superconductor Tc on doping 



Essential Ingredients for Superconductivity?

• Relatively few Moire materials apart from magic angle 
graphene with this symmetry. 

•  symmetry crucial for superconductivity
•Sublattice potential suppresses the coupling J

C2𝒯

•Twisted bilayer graphene aligned on hBN 
→ no superconduc-vity 
(Sharpe et al. Science 19, Serlin et al. 
Science 20)



Alternating Twist Multilayers
• Other systems with C2 symmetry 

Jong	Yeon	Lee Eslam Khalaf

Khalaf,	Kruchkov,	Tarnopolsky,	AV,	1901.10485

2

φ =
1 + 5

2

Larger magic angles!

Flat band+Dirac

Alternating twist sandwich

Magic angle = 2 1.1o ∼ 1.55o

Carr et al. stability `19

Magic angle = 
1 + 5

2
1.1o ∼ 1.78o



Deconstructing n=3, 4, 5
DiracTBG -√2

TBG-φ TBG-1/φ

DiracTBG: √3                TBG            

                                                                                                                                

                                                                                                                                



ASIDE: Alternating-twist multilayer graphene

• Alternating twist: 

• Magic angles 
simply related to 
the bilayer case.

Khalaf,	Kruchkov,	Tarnopolsky,	AV,	1901.10485

2

φ =
1 + 5

2

2 cos
πk

n + 1

Jong	Yeon	Lee Eslam Khalaf



Matthias’ Rules for Superconductivity

Bernd Matthias (1918-1980)



Alternating twist trilayer -EXPT

Park et al. 

Hao et al. 

Strong coupling superconductivity 

associated with |nu|=2


Tuning by displacement field.



Experiments on Alternating Twist Trilayer

θ = 1.56o

Pablo’s talk - Moire 3.0 Hao et al. 



n=4, 5 Alt. Twist Multilayers

Also Stevan Nadj-Perge group



From Skyrmions to Spin-Polarons 
&  

From LLL to TBG

• Skyrmions = electrons+ many spin flips 

• Landau Levels versus TBG bands:

n (spin flips)0 1
Skyrmionselectrons spin-polaron

Lowest 
Landau Level

TBG 

Chern Bands 0 1
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Bound States with Dispersion
• Spin-Polaron bound states appear on the `low dispersion’ 

side [away from charge neutrality]. 

• Very small dispersion.

Could be unstable to further 

spin flip bound states.


(Kwan…Parameswaran

arXiv:2112.06936)




Phenomenology
• Consequences for 

Experiment? STM, 
Cascade features? 

• Superconductivity: “Spin-
Bipolarons” paired via 
magnetic superexchange.  

• Role of strain?

ν = + 1(hole)

Also Vafek-Bernevig



OUTLINE

• Lecture 1 - Preliminaries, the chiral model, wave 
functions, from bilayer to n=3,4,5.. 

• Lecture 2 - Correlated Insulators - exact solutions, 
Hartree Fock, topology and  model.


• Lecture 3 - Superconductivity - disordered  model.


• Lecture 4 - Fractional Chern insulators in magic angle 
graphene

σ

σ



Overview

Serlin et al. Sharpe et al. Science `19. Stepanov et al. PRL `21 
Magic angle graphene (+ aligned hBN)

FCIs  

by fractional filling of Chern band?

Intrinsic Topological Order



Intrinsic Topological Order - BEYOND Fractional 
Quantum Hall

n=1$

n=2$

n=3$

B = 28 Tesla 
n = 0.25 x 1012 cm-2


PART1: Fractional Chern Insulators: 

Fractional Quantum Hall effect 

in topological band structure 


(rather than Landau levels)?

1. Density of electrons not 
set by the field.


2. FQH at small or zero field.


3. Potentially enhanced 
energy scales ( )


4. Translation symmetry 
enriched Topological 

Order

e2 n

12 nm

1/3

Sheng et al, `11. Neupert et al, `11.  Tang et al, '11. Regnault & Bernevig `11. Qi `11.



• Ideal quantum geometry of chiral TBG


• Fractional Chern insulators in realistic TBG


• Experiments on TBG FCIs


• Zero field FCIs and Conclusion.



Quantum Geometry of Electronic Bands

  : Berry connection
      : Berry curvature

A(k) = ⟨uk | i∇k |uk⟩
Ω(k) = ∇k × A(k)

Berry Curvature - (well known)

: Berry connection: Berry connection: Berry connection

ds2 = gba(k) dkb dka

Fubini Study metric

Metric on BZ

Berry phase Ω
2-bands

Quantum Metric:

ηab(k) = gab(k)−
i
2

Ωϵab

ηab = ⟨∂auk |1 − |uk⟩⟨uk | |∂buk⟩ Projector - eliminates trivial changes

(Hermitian)

gab(k)



Approaching Landau Levels

• Achieve FCIs by mimicking Lowest Landau Level


• Flat bands


• Uniform Berry curvature [Parameswaran, Roy, Sondhi;…]


• Trace condition - Ideal quantum geometry. [Roy, 
Classen et al.]

|Tr[g] | ≥ 2 |Det[g] | ≥ |Ω |
Equality=Trace Condition (Lowest L. L.)

Automatically satisfied by chiral TBG and lowest LL!  



Quantum Geometry of Moire Flat Bands

• What is the Quantum Geometry of the Moire flat bands?


• In the chiral limit, Moire flat bands satisfy the Trace 
condition.

|Tr[g] | = |Ω |

Previous examples lowest Landau Level

⌘(k) = ⌦(k)

quantum metric:

|Tr[g] | ≥ 2 |Det[g] | ≥ |Ω |
Equality=Trace Condition (Lowest L. L.)

(Ledwith et al.)

(See also Jie Wang et al.)



Special properties of Chiral Flat Bands: 

(i) Trace Condition Satisfied


(ii) Nearly uniform Berry curvature


(iii) Flat bands


Quantum Geometry and Fractional Chern insulators

|Tr[g] | = |Ω |

κ = 0

Ledwith, Tarnopolsky, Khalaf, AV `20. Jie Wang, Cano, Millis, Liu, Yang `21
Moire’ Numerics:  

Parameswaran et al. `13. Roy `14. Classen et al. 2014. Mera and Ozawa `21. Varjas et al. `21

TBG away from the Ideal Limit 

κ = 0.6

Repellin, Senthil Phys. Rev. Research. `20 Abouelkomsan, Liu, Bergholtz PRL `20 Wilhelm, Lang, Läuchli arXiv:2012.09829

ν = 3+



Numerical DMRG Study of  
FCIs in TBG

Dan Parker

Harvard Berkeley BerkeleyBerkeley



FCI Stability in TBG

Spin and valley polarized; 

C2 broken by hBN 

Hartree-Fock generated bandwidth 

for electrons: ν = 3+

BM Model

Geometry Dispersion



FCI Stability in TBG



B-Field Stabilized FCI in TBG
• Note, dispersion 

restricted to small area 
of BZ near Gamma. 

• Effective mass at band 
bottom:  

• In a weak magnetic 
field - expect significant 
reduction of bandwidth.

m* ≈ mband/6

W = W0 −
ℏ
2

eB
m*

Parker et al. `21



• Small magnetic fields 
improves band geometry 
and dramatically reduces 
bandwidth. 

• Weak field should stabilize 
FCI at filling 3+2/3

B-Field Stabilized FCI in TBG

3Tesla



Experiments - FCIs in TBG

Andrew Pierce Jeong Min Park Yuan CaoSeung Hwan LeeYonglong Xie

Amir 

Harvard

Pablo Jarillo-Herrero



n = C
ϕ
ϕ0

+sYacoby Group - Measure compressibility 
Identify incompressible states in (n, B) plane 

(C, s) = (+1, + 3)

n

C s

Chern 
Insulator

CI
Integer Integer

CDW 0 Fractional

Symm 
Breaking 

CI
Integer Fractional

FCI Fractional Fractional

Identifying FCIs



Earlier Work - FCIs in Hofstadter Bands
Spanton et al, Science (2018)

Magnetic field is responsible for the 
formation of the Hofstadter Chern bands, 
precluding the realization of FCI in the 
zero-field limit.

Spanton et al, Science (2018)

Magnetic field is responsible for the 
formation of the Hofstadter Chern bands, 
precluding the realization of FCI in the 
zero-field limit.

High field FCIs at ≥ 25 Tesla
Magnetic Field Creates Chern bands 



(C, s) = (+1, + 3)

n

FCIs in Chern Bands

Y. Xie, A. Pierce…Y. Yacoby. arxiv:2107:10854



FCIs in Moire Graphene
FCIs in 5-6 Tesla

C= -1C= +1

n=1$

n=2$

n=3$

n = 0.25 x 1012 cm-2


B~28 Tesla

Same density of holes

Requires ~28Tesla for FQH stateNumerics + theory: ~2-3 Tesla



Zero Field FCI?



Conclusions and Future Directions
• Unique Quantum Band geometry of Magic angle graphene 

holds the seed to realizing FCIs!  

• Zero field @magic angle - FCIs seem close but need a 
weak field to stabilize  

• Slightly larger angles - DMRG predicts zero field FCIs. 

• Role of strain? 

• Many other fractions including even denominator 
experimentally observed!



Collaborators

HarvardBerkeley

Eslam Khalaf

Harvard

 

Patrick Ledwith

Harvard

Theory: Jong Yeon Lee, Daniel Parker, G. Tarnopolsky, A. Kruchkov, Adrian Po, T. Senthil, Liujun Zou


Experiment: Kim group, Yacoby & Pablo Jarillo Herrero group, Yazdani group.

https://arxiv.org/abs/2004.00638

