2D Magnetic Materials

Alberto Morpurgo

Geneva: Z. Wang, I. Gutierrez, N. Ubrig, M. Gibertini, G. Long, H. Henck, L. Wang, D.-K. Ki

Collaborations: A. Imamoglu, M. Kroner (ETH); P. Maletinsky, L. Thiel, M. Tschudin (Basel); N. Chepiga, F. Mila (EPFL); I. Martin (Argonne)

Materials: E. Giannini, D. Dumcenco (Geneva); D. Mandrus (Oak Ridge); T. Taniguchi, K. Watanabe (NIMS)

Outline

- Short Introduction
- Semiconducting Crl₃ --- Ferromagnet or layered antiferromagnet?
 - Bulk
 - Kerr, Scanning magnetometry, an transport on multilayers
- Semiconducting AFM CrCl₃ --- Weak anisotropy & Spin-Flop
 - Anisotropy, Spin-Flip & Spin-Flop
 - Phase diagrams & Quantitative analysis
- More on AFM...(only one slide)
- van der Waals tunneling spin valves in Fe₃GeTe₂
 - ideal interfaces of vdW materials
- Exfoliation gives access to more length scales: not only 2D materials
 - Helical magnets and topological transitions in $Cr_{1/3}NbS_2$

Vast material portfolio

How can we probe magnetism in atomically thin crystals? What do experimental probes really probe?

Basic Concepts of low-D magnetism

Heisenberg model
$$H = \sum_{i=1}^{N} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - D(\mathbf{S}_z^2)$$

Ferromagnetism --- J_{ij} <0 (AF more complex but "similar")

Mean-field: FM state with
$$\mathbf{M} \propto \sum_{i} \langle \mathbf{S}_{i} \rangle \neq 0$$
 (always T < T_c)

Elementary excitations: spin waves $E(\mathbf{k}) = \hbar\omega(\mathbf{k}) \propto |\mathbf{k}|^2$ (if D=0) (1 magnon = 1 spin flip)

Fluctuations:
$$\langle \delta \mathbf{M} \rangle \propto T \int_0^{BZ} \frac{d\mathbf{k}}{\frac{\hbar \omega(\mathbf{k})}{kT} - 1} \xrightarrow{k \to 0} T \int_0^{\infty} \frac{k^{(d-1)}dk}{k^d} \xrightarrow{d \le 2} \infty$$

Anisotropy:
$$\xrightarrow{kT \ll D} \hbar \omega(\mathbf{k}) \propto \Delta + |\mathbf{k}|^2 \quad \langle \delta \mathbf{M} \rangle \propto T e^{-\frac{\Delta}{kT}} \int k^{(d-1)} dk \xrightarrow{T=0} 0$$

From full rotational symmetry to "Ising" = bypass Mermin-Wagner

...but what is interesting for 2D materials

- 1) Semiconductor physics coupled to magnetism:
 - How does the spin couples to the electron states in the bands?
 - Which states does the spin configuration affect?

$$H = \sum_{j \in J} J_{ij} S_i \cdot S_j - D(S_z^2)$$
 How are J and D "coupled" to the band states?

Key to understand: transport, optical properties, thickness evolution Can we expect large effects? From neutrons J & D typically $\sim 1 - 2$ meV

- 2) Electrostatic doping expected to have large effects
- 3) "Other" magnetic length scales; "2D version" of phenomena known in 3D

••••

Exfoliating/processing/encapsulating in Glove box

Extremely unstable in air:

Thin crystals (even 50 nm) dissolve in a few minutes

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bevin Huang¹*, Genevieve Clark²*, Efrén Navarro-Moratalla³*, Dahlia R. Klein³, Ran Cheng⁴, Kyle L. Seyler¹, Ding Zhong¹, Emma Schmidgall¹, Michael A. McGuire⁵, David H. Cobden¹, Wang Yao⁶, Di Xiao⁴, Pablo Jarillo-Herrero³ & Xiaodong Xu^{1,2}

270 | NATURE | VOL 546 | 8 JUNE 2017

Hysteretic Kerr rotation angle as expected for ferromagnets

Magneto-optical Kerr effect to probe magnetism

How to measure magnetization of 2D materials?

Scanning magnetometry of 2D magnets

Single-spin magnetometer:

Maletinsky's group

Example

2L and 3L CrI3 on same flake

Individual NV-center on diamond tip

- Magnetic field Zeeman-splits states of NV-center
- Energy of splitting gives magnetic field
- Narrow microwave absorption line determines energy splitting → local B-field
- From fringing field reconstruct M

Fringing field only on 2L

$$M(2L) = 0$$

 $M(3L) \sim 16 \mu_B/nm^2$

Direct observation of layered antiferromagnetism

In all even multilayers: M = 0

In all odd multilayers: M ~ 16 $\mu_{\rm R}/{\rm nm}^2$

L.Thiel, Z. Wang, AM, P. Maletinsky et al Science 2019

Sign of exchange coupling depends on strain?

Why bulk is FM and multilayers are AFM?

L.Thiel, Z. Wang, AM, P. Maletinsky Science 2019

Kerr-effects in double gated Crl₃ bilayer devices

Opposite polarity = E-field

Magnetoelectric effect

Same polarity = n accumulation

Electron accumulation: Turns AFM into FM

Mak & Shan groups Nat Mat 17, 406 (2018) Nat Nano 13, 549 (2018)

...But...

- 1) In which states does the charge go?

 Crl₃ = semiconductor

 E_F is in the gap
- 2) How much charge is accumulated?

Devices for transport measurements

In-plane transport = field-effect transistor

Thin Crl₃ as tunnel barrier between graphene contacts

Example of tunnel barrier device

In-plane and vertical transport

In-plane transport = field-effect transistor

10⁴ 0.35 V 5 0.5 V 10² R (M Ω) / (µA) 0.7 V 0.25 K 10⁰ 0.05 0.10 -0.8 -0.40 0.4 $1/T (K^{-1})$ V(V)

Below 150 K: too insulating

Works down to the lowest T

Tunneling Magnetoresistance

New phenomenon:

10'000 % magnetoresistance due to magnetic states of the tunnel barrier

Different Magnetic States in Atomically Thin Crl₃

Steps also visible in Kerr effect (with A. Imamoglu, M. Kroner @ETH)

Questions:

- Multilayer-to-bulk transition?
- Do we expect large MR in all layered antiferromagnets?

Z. Wang et al Nat Comms 9, 2516 (2018)

Similar results on MR Science 360, 1214 (2018) Xu's group 360, 1218 (2018) Jarillo-Herrero's group

Magnetoresistance onset is NOT at ferromagnetic transition (T_c = 61K)

Tunneling: Fowler-Nordheim regime

Barrier height depends on magnetic state

Assuming m* = free-electron mass Barrier height:

$$B = 0$$
 ~ 250 meV

$$B = 2T$$
 ~ 170 meV

Change in barrier height: 50 – 100 meV But exchange integrals 2-3 meV... ???

$$H = \sum_{i=1}^{\infty} \mathbf{S}_i \cdot \mathbf{S}_j - D(S_z^2)$$

Phase diagram of CrCl₃ from tunneling MR

CrCl₃: weakly anisotropic layered antiferromagnet with in-plane spins

Z. Wang, M. Gibertini, AM et al Submitted

Energy scales and magnetic states of an antiferromagnet

Exchange =
$$J$$
; $E = J\overrightarrow{S_1} \cdot \overrightarrow{S_1}$ Anisotropy = K ; $E = -KS_z^2$

Zeeman =
$$\mu B$$
 ; $E = -\mu \vec{B} \cdot \vec{S}$

Bulk

Energy balance:

$$\Delta E \sim - \mu B + J$$

Spin-flip transition

Weak anisotropy = Small K

Energy balance:

$$\Delta E \sim -\frac{\mu B}{J} \mu B + K$$

Spin-flop transition

Even-odd effect in weakly anisotropic AFM multilayers

 $CrCl_3$ = layered antiferromagnet with weakly anisotropic easy plane

Just like in the bulk

Energy balance:

$$\Delta E \sim -N \frac{\mu B}{J} \mu B$$
Spin-flop transition at B ~ 0

Net magnetization for odd N

Energy balance:

$$\Delta E \sim -N \frac{\mu B}{J} \mu B + \mu B$$

Spin-flop transition at B ~ J/N

Compare with Crl₃

Perpendicular field

In-plane field

Strong uniaxial anisotropy in CrI₃
Spin alignment occurs different in in-plane and perpendicular field

Fe₃GeTe₂: a van der Waals ferromagnetic metal

Two-dimensional itinerant ferromagnetism in atomically thin Fe₃GeTe₂

NATURE MATERIALS | VOL 17 | SEPTEMBER 2018 | 778-782 |

Xiadong Xu's group @Seattle

Tunneling Spin Valves

Parallel magnetization

Anti-Parallel magnetization

↑↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ B

$$TMR = \frac{R_{AP} - R_P}{R_{AP}} = \frac{2P_1 P_2}{1 - P_1 P_2}$$

Conventional ferromagnetic metal films with hBN tunnel barrier

Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

M. Piquemal-Banci, ¹ R. Galceran, ¹ S. Caneva, ² M.-B. Martin, ² R. S. Weatherup, ² P. R. Kidambi, ² K. Bouzehouane, ¹ S. Xavier, ³ A. Anane, ¹ F. Petroff, ¹ A. Fert, ¹ J. Robertson, ² S. Hofmann, ² B. Dlubak, ¹ and P. Seneor ¹ APPLIED PHYSICS LETTERS **108**, 102404 (2016)

Ideal behavior difficult to achieve

- Magnetization switching
- Tunnel barrier quality
- etc.

Van der Waals Magnetic tunnel junction Fe₃GeTe₂ / hBN /Fe₃GeTe₂

 Fe_3GeTe_2 : ferromagnetic for $T < T_c = 220 K$

Van der Waals Heterostructure = Tunneling spin valve

Measure TMR + anomalous Hall effect

$$R_{Hall} = R_H H + R_A M$$

$Fe_2GeTe_3/hBN/Fe_2GeTe_3 = Ideal TMR behavior$

Polarization P = 0.66; Spin up/down $N_{\uparrow} = 83\% N_{\downarrow} = 17\%$

Z. Wang, AM et al Nano Letters 2018

TMR & anomalous Hall conductivity = same T dependence

Tunneling Magneto-Resistance

Spin polarization at the surface proportional to bulk magnetization

Anomalous Hall effect

Compare temperature dependence

Co_{1/3}NbS₂ a helical magnet with 48 nm pitch

Topological transitions: states with different spin winding number

Controlling the Topological Sector of Magnetic Solitons in Exfoliated $Cr_{1/3}NbS_2$ Crystals

L. Wang, ^{1,2,*} N. Chepiga, ³ D.-K. Ki, ¹ L. Li, ⁴ F. Li, ⁵ W. Zhu, ⁵ Y. Kato, ⁶ O. S. Ovchinnikova, ⁷ F. Mila, ³ I. Martin, ⁸ D. Mandrus, ^{4,9,10} and A. F. Morpurgo ¹, PRL **118**, 257203 (2017)

Chiral Magnetic Soliton Lattice on a Chiral Helimagnet

Y. Togawa, ^{1,2} T. Koyama, ³ K. Takayanagi, ¹ S. Mori, ^{2,3} Y. Kousaka, ⁴ J. Akimitsu, ⁴ S. Nishihara, ⁵ K. Inoue, ^{5,6} A. S. Ovchinnikov, ⁷ and J. Kishine ⁸

Interlayer Magnetoresistance due to Chiral Soliton Lattice Formation in Hexagonal Chiral Magnet CrNb₃S₆

PRL **111**, 197204 (2013)

Y. Togawa, ^{1,2,*} Y. Kousaka, ³ S. Nishihara, ⁴ K. Inoue, ^{4,5} J. Akimitsu, ³ A. S. Ovchinnikov, ⁶ and J. Kishine ⁷

Magnetic structures coupled to transport: aligning spins lowers resistance

Direct observation by Lorentz microscopy

Spin structure of the anisotropic helimagnet Cr_{1/3}NbS₂ in a magnetic field

Benjamin J. Chapman, Alexander C. Bornstein, Nirmal J. Ghimire, 2,3 David Mandrus, 2,3,4 and Minhyea Lee 11

APPLIED PHYSICS LETTERS 105, 072405 (2014)

$$\mathcal{H} = \sum_{i} [-D \mathbf{s}_{i} \cdot \mathbf{s}_{i+1} - D \cdot (\mathbf{s}_{i} \times \mathbf{s}_{i+1}) - \mu_{B} \mathbf{B} \cdot \mathbf{s}_{i} + A (\hat{z} \cdot \mathbf{s}_{i})^{2}]$$

Ferromag.

Exchange

Dzyaloshinskii

exchange

Moriya

In-plane

anisotropy

- Bulk well-understood
- Model parameters can be extracted quantiatively

Varying thickness: shorter/longer than magnetic pitch

Thickness determines the spin winding number at B = 0 T; It has no influence on the critical temperature

Ramping up magnetic field: first order transitions between different topological sectors

- Ground state has different winding numbers in different B ranges
- 1st-order transitions between topological sectors
 change the spin configuration throughout the crystal thickness
- Hysteresis & abrupt magnetization jump -> resistance jumps

Compare MR of bulk and crystals with t > 48 nm

B value at which WN # 1 -> 0 transition occurs

The magic of topology....

Drastic difference in the MR of $Cr_{1/3}NbS_2$

t > 48 nm -> hysteretic MR

t < 48 nm -> no hysteresis in MR

Conclusions

The game is on...