'Unhinging' the surface of Higher-Order Topological Phases of Matter

Appearing soon on arXiv 1905.*****

Perfect beam-splitter

Apoorv Tiwari @

Collaborators

Ming-Hao Li ETH Zurich

B.A Bernevig Princeton

Titus Neupert Univ. of Zurich

S.A Parmeswaran Oxford

Motivation and underlying question:

To establish a generalized bulk boundary correspondence for higher-order topological phases of matter (HOTPs).

- What are the possible surface terminations for HOTPs?
- Is there a generalized notion of anomalies for HOTPs?

In this work, we focus on hinge HOTPs.

Higher-Order Topological Phases:

Defining feature: Bulk Boundary correspondence

pth order phases \implies symmetry protected **gapless** modes on codimension-p corners.

p>1 require spatial symmetries that map one surface to another.

• 1st Order Topological Phases:

eg. TIs, TSCs, SPTs

• 2nd Order Topological Phases:

• 3rd Order Topological Phases*:

^{*} Benalcazar et al; Schindler et al; Brouwer et al; Khalaf; ...

1st-Order Topological Phases: Bulk-Boundary correspondence

Equivalence classes of gapped (and symmetric) short-range entangled systems.

Bulk-boundary correspondence for TIs

Bulk topological response:
$$S_{\text{em-resp}}[A] = \frac{\theta}{8\pi^2} \int_{\mathcal{M}} F \wedge F$$
 ; $\theta = 0 \text{ or } \pi$.

$$; \theta = 0 \text{ or } \pi.$$

Anomalous surface terminations:

Gapless:

Single Dirac Cone

$$Z_{\psi}[A] = |Z_{\psi}[A]| \exp\left\{-\frac{i\pi}{2} \sum_{k} \operatorname{sgn}(\lambda_{k}[A])\right\} \longrightarrow \text{Anomalous}$$

$$:=: |Z_{\psi}[A]| \exp\left\{-\frac{i\pi\eta[A]}{2}\right\}$$

$$Z_{\mathrm{TI}}[\mathcal{M},A] = |Z_{\psi}[A]| \exp\left\{-\frac{i\pi\eta[\partial\mathcal{M},A]}{2} + iS_{\mathrm{em-resp}}^{\theta=\pi}[\mathcal{M},A]\right\} \quad \longrightarrow \quad \text{Non-Anomalous}$$

^{*} Witten RMP (2016); Alvarez-Gaume Della Pietra, Moore (1985)

Symmetry broken:

U(1) breaking (s-wave pairing)

- Anomalous Surface Topological Order (STO):
 - → By physical requirements the topological order needs to have:
 - A local fermion, i.e cannot be described by a modular tensor category.
 - \bullet Chiral central charge $c_{-}=1/2$.
 - Hall conductance $\sigma_{xy} = 1/2$.
 - → Minimal realization known as T-Pfaffian: $\text{T-Pfaffian} = \left[\mathsf{U}(1)_8 \times \overline{\text{Ising}}\right]/\mathbb{Z}_2$

$j \rightarrow$	0	1	2	3	4	5	6	7
1	1		i		1		i	
ψ	-1		-i		(-1)		-i	
σ		1		-1		-1		1
Charge	0	e/4	e/2	3e/4	e	5e/4	3e/2	2e
							<u> </u>	al fe

 $1_2 \longleftrightarrow \psi_2$ $\mathcal{T}: 1_6 \longleftrightarrow \psi_6$ else

Similarly Anomalous STOs have been proposed for Topological superconductors and SPTs in general.

* Vishwanath-Senthil; Bonderson-Nayak-Qi; Chen-Fidkoski-Vishwanath; Metlitski et al; ...

Back to the central question:

What are the other possible symmetric surface terminations of hinge higher order topological phases?

 $C_{2n}\mathcal{T}$ symmetric second-order topological phases:

Higher-order phase	Symmetry	Chiral Hinge mode	Surface pasting	
Fermionic HOTI	$C_{2n}\mathcal{T}\ltimesU(1)$	Dirac $q=1;\ c=1$	IQHE	
Fermionic HOTSC	$C_{2n}\mathcal{T}\times\mathbb{Z}_2^f$	Majorana $c=1/2$	$p\pm ip$	\mathbb{Z}_2 classified.
Bosonic HOSPT	$C_{2n}\mathcal{T}$	Bosonic $c=8$	\mathbb{E}_8 phase	

General strategy to "unhinge" HOTPs

- Start from hinge HOTP.
- Introduce $C_{2n}\mathcal{T}$ symmetric topological order on the surface.
- Properties of surface topological order (STO) can be read-off from properties of hinge it needs to absorb.
- Look for symmetric gapping channels.
 (Haldane gapping criteria and anyon condensation)

Unhinging the hinge HOTI

- ullet Properties of ${\cal A}$:
 - → Chiral central charge, $c_- = 1/2$. Therefore Non-abelian!
 - → Hall conductance, $\sigma_{xy} = 1/2$.
- Same constraints as STO for TI, therefore we can use T-Pfaffian.

$$\text{T-Pfaffian} = \left[\mathsf{U}(1)_8 \times \overline{\mathrm{Ising}} \right] / \mathbb{Z}_2$$

	c	$ \sigma_{xy} $
ert	1	1
$\phi^{A/\bar{A}}$	1	1/2
$\psi^{A/ar{A}}$	1/2	0
ϕ	1	0

• Effective model for Hinge + STO, multicomponent chiral Luttinger liquid.

Unhinging the hinge HOTI

• Effective model for Hinge + STO:

$$\mathcal{L}_{\text{Hinge}} = \frac{1}{4\pi} \partial_x \Phi^T K \partial_t \Phi - \frac{V}{4\pi} \partial_x \Phi^T \partial_x \Phi + \sum_I \lambda_I \cos[\ell_I^T \Phi + \alpha_I]$$

$$\Phi^T = [\phi, \phi^{\mathsf{A}}, \phi^{\bar{\mathsf{A}}}, \varphi]; \quad K = \text{diag}[1, -2, -2, 1]; \qquad q = [0, 1, 1, 1].$$

Haldane gapping criteria:

- → Condensability: $\ell_I^T K^{-1} \ell_I = 0$.
- → Mutual locality: $\ell_I^T K^{-1} \ell_J = 0$.
- → No Spontaneous symmetry breaking: $\ell_I^T K^{-1} q = 0$.

$$\ell_1 = [1, 1, -1, 0]^T$$

$$\ell_2 = [0, 1, 1, 1]^T$$

Algebraic formulation of A as a **Modular Tensor Category (MTC)**:

- → particle types, a,b,c...i.e Anyon types in the bulk TQFT and conformal blocks in edge CFT.
- **→ Fusion rules** a x b =
- → Braiding phases and topological spins (`S' and `T' matrices).

Several consistency conditions between this data.

→ Can compute Ribbon diagrams using MTC:

Ribbon diagram

MTC computation sketch

Unhinging via edge condensation

Edge condenation between
$$\underset{\mathcal{A}}{\mathcal{A}}$$
 and $\bar{\mathcal{A}}$. $\overset{\sim}{\mathcal{A}}$ Anyon condenation in $\underset{\mathcal{A}}{\mathcal{A}} \times \mathcal{A}$.

Anyon/edge condensation: Theoretical tool to study possible phase transitions. More powerful than K-matrix Luttinger liquid approach.

Procedure:

- ullet Identify a set ${\mathcal B}$ of bosonic mutually local anyons that may condense.
- riangle Two anyons a_1 and a_2 identified if $a_1 \in \mathcal{B} imes a_2$.
- riangle An anyon a splits if $a \in \mathcal{B} \times a$.
- ightharpoonup Anyons that braid non-trivially with ${\cal B}$ get confined.

Unhinging the HOTI via edge condensation

$$A \equiv T$$
-Pfaffian

$$\left\{1_{j}^{\mathsf{A}}, \psi_{j}^{\mathsf{A}}, \sigma_{j}^{\mathsf{A}}\right\} \times \left\{1_{j}^{\bar{\mathsf{A}}}, \psi_{j}^{\bar{\mathsf{A}}}, \sigma_{j}^{\bar{\mathsf{A}}}\right\} \longrightarrow \text{anyons in } \mathcal{A} \times \mathcal{A}$$

Toric Code $\times \{1, f\}$

condense `e' in Toric Code

 $\begin{array}{c} \text{HOTI hinge} \\ \{1,f\} \end{array}$

Other surface terminations

HOTI surface with no topological order.

Only side-surfaces gapped.

Completely gapped surface.

Higher-Order surface as a **beam splitter**

Unhinging the HOTSC and HOSPT

HOTSC

$$\mathcal{A} \equiv \mathsf{SO}(3)_6$$
 anyon model

Single Majorana mode

Bosonic HOSPT

$$A \equiv SO(8)_1$$
 anyon model

c=8 chiral Boson

A technical aside

- → Modular tensor categories don't have transparent fermions!
- → Technical difficulty: extracting chiral central charge of condensed theory {1,f} as there are sixteen such theories with $c_-^{\nu} = \nu/2$, where $\nu \in \mathbb{Z}_{16}$.

→ Can use commutativity of this diagram to compute chiral central charge.

Summary

- → Surfaces of Hinge Topological phases can be gapped out at the close of introducing surface topological order.
- → Additionally there are various other surface terminations possible.

Future directions

→ Surface topological order for 3rd-order topological phases?

→ Topological order enriched by spatial symmetries. Fractionalized higher-order topological phases.

Thank you for your attention!