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I. PLAN

In these lectures, I will touch upon these topics:

1. A Few words about topological order.

2. p-wave superconductors

3. Kitaev chain

4. Experimental platforms: TI surfaces, nanowires, 2d systems.

5. Signatures: conductance, spin, topological Josephson Junctions.

6. Topological superconductivity in a planar Josephson junction (Yacoby’s experiment)

7. Beyond Majorana

II. TOPOLOGICAL STATES OF MATTER

Most broad definition: gapped quantum states of matter that do not spontaneously break any sym-
metry of the Hamiltonian, yet they are distinct from a trivial “atomic” insulator. There is necessarily
a phase transition between the two phases. “Hidden” (non-local or “topological”) order encoded in the
ground state wavefunction. Often (but not always), these states have topologically protected gapless
edge states, that cannot be removed unless the bulk is destroyed (i.e., undergoes a phase transition to
a different phase).

Examples:

1. Topological insulators in 2D and 3D, Haldane S = 1 chain. These are “symmetry protected
topological phases”: they are distinct from an atomic band insulator as long as some symmetry
is maintained.

2. The integer quantum Hall effect.

A further useful distinction to make is between topologically ordered states and other “topological”
states. A prime example of a topologically ordered state is the fractional quantum Hall state in d = 2.
The topological ordered ones are characterized by several common features:

1. These states support collective “point-like” excitations (quasi-particles) that obey fractional
statistics, i.e., they are anyons. These excitations often (but not always) carry fractional quantum
numbers.
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2. The ground state has a non-trivial, topologically protected degeneracy that depends on the
topology of the manifold on which the system lives. The ground state wavefunction is able to
“sense” the topology of the surface.

Perhaps the most interesting of these states are non-Abelian states, in which there is a topologically
protected degeneracy that grows exponentially with the number of quasi-particle excitations. Each
such quasi-particle has its own characteristic degeneracy. Exchange of two quasi-particles implements
a unitary matrix on the degenerate subspace, and different unitary matrices do not commute, hence
the name. Topologically ordered states can only appear in strongly interacting systems.

In these lectures, we will discuss topological states of matter that do not exactly fit into either of
these categories. The states we will discuss appear in superconductors, and can (for the most part)
be described in terms of non-interacting, quadratic Hamiltonians (more precisely, to describe them, it
is enough to consider the interactions at the mean field level). Nevertheless, they have some of the
characteristics that we associate with topological order: they are not symmetry protected, and they can
have topologically protected ground state degeneracies of non-local origin. These degeneracies are not
related to the topology of the manifold the system lives on. Rather, they are associated with defects,
such as edges, vortices, or dislocations. Moreover, there is a well-defined sense in which “braiding” can
be performed (even though we are not dealing with point particles), and the result of the braiding
operation is a topologically protected non-Abelian operation.

Over the last decade, there has been significant progress in realizing some of these systems experi-
mentally. We will discuss the experimental platforms and the physical signatures of these states.

III. BDG FORMALISM AND P-WAVE SUPERCONDUCTORS.

anyons. Defects in Abelian systems behave as non-Abelian objects; introducing defects in a non-Abelian system 
enriches its properties, providing additional "quantum gates" that can be implemented in a topologically 
protected manner. 

Majorana zero modes in condesed matter physics

Majorana zero modes are at the heart of the simplest kind of non-Abelian 
statistics - that of Ising anyons - and also the simplest example of a non-Ablian 
defect. They are also the kind which is probably closest to experimental 
realization. I will spend most of this lecture describing them. 

Majorana zero modes are closely tied with superconductivity. They can appear at 
cores of vortices in p-wave superconductors, and at edges of superconducting 
wires. They also appear as quasi-particles of the Moore-Read      state; this 
state turns out to be just a paired (superconducting) state of composite 
fermions. Let me start by briefly remind you some basic facts about the 
spectrum of a superconductor.
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1d p-wave Hamiltonian:
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H = (−2t cos k − µ) c†kck + ∆ sin kxc
†
kc
†
−k + h.c. (1)

Phase transition at µ = ±2t, at kx = 0, kx = π, respectively.
Change µ slowly in space. Write δµ = µ − 2t. For small k, expand to first order in kxs around

k = 0:

H ≈
(
−δµ(x) −i∆∂x
−i∆∂x δµ(x)

)
(2)

Write as

H = −δµ(x)τz −∆τxi∂x. (3)

Look for zero energy solution:

[−δµ(x)τz − i∆τx∂x]ψ = 0 (4)

Multiply by iτx:

[δµ(x)τy + ∆∂x]ψ = 0 (5)

ψ = e−
∫ x
0
dx′ δµ(x)τy

∆ (6)

This can be normalized at ±∞ (with an appropriate choice of the eigenvalue of τy) if µ(±∞) have
opposite signs.

(From here, we can derive the dispersing edge states of the 2d case, and the vortex states.)
Derive the fact that the ground state parity is opposite for the two b.c.’s in one phase, and the same

in another phase, by looking at quantized momenta. Relate this to the existence of the zero modes.
Discuss the ground state degeneracy, and how to construct it.
Kitaev’s chain:

H =
∑

j

−tc†jcj+1 + ∆c†jc
†
j+1 +H.c.− µc†jcj (7)

Write in terms of Majorana operators:

cj =
αj + iβj

2
(8)

αj = cj + c†j

βj = cj − ic†j (9)

α† = α, β† = β, {αi, βj} = δij
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H =
∑

j

−t(αj − iβj)(αj+1 + iβj+1) + ∆(αj − iβj)(αj+1 − iβj+1) +H.c.− µ(αj − iβj)(αj + iβj)

=
∑

j

−2t(iαjβj+1 − iβjαj+1) + 2∆(−iαjβj+1 − iβjαj+1)− µ(iαjβj − iβjαj)

=
∑

j

−(2t+ 2∆)iαjβj+1 + (2t− 2∆)iβjαj+1 − µ(iαjβj − iβjαj). (10)

Majoranas at the ends:

γ†R,L = γR,L. (11)

Argue for: 1. The phase is characterized by the change in the parity of the ground state when a
flux is inserted. 2. Phase transition (in non-interacting system) must occur by closing and re-opening
of the gap at either k = 0 or at k = π. (g.s. parity has to switch at one of these points.)

If we have two phases, one where the parity of the ground state changes when we insert a flux and
one where it does not, then we cannot go adiabatically between the two. This is true even in the
presence of interactions. This is because, as we go from one phase to the other, then at least in one
boundary condition sector, the ground state parity would have to switch, which implies that the gap
has to close.

Key properties:

1. Ground state is two fold degenerate. [γL,R, H] = 0, [iγLγR, H] = 0.

2. iγLγR is the total fermion parity of the ground state.

3. No local way to detect which ground state the system is in. (Any local observable is the same
in the two ground states!)

IV. EXPERIMENTAL REALIZATIONS AND SIGNATURES

Rule of thumb: whenever we have a single Fermi surface in the normal state, if we manage to gap
it, we will get a topological superconducting state.

Example: Fu-Kane superconductor, in either 1d or 2d.
Oreg-Lutchyn-von Oppen-Refael-Sau-das Sarma wire:
Necessary ingredients: 1. Spin-orbit coupling. 2. Breaking of time reversal symmetry. 3. supercon-

ductivity.

H = c†k

(
k2x
2m
− αkxσy − µ−Bσx

)
ck + ∆c†k↑c

†
k↓ (12)

Write BdG Hamiltonian:

H =
(
c†k↑ c†k↓ c−k↓ −c−k↑

)( k2
x

2m − αkxσy − µ−Bσx ∆

∆ −(
k2
x

2m − αkxσy − µ)−Bσx

)



ck↑
ck↓
c†−k↓
−c†−k↑



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Hamiltonian at k = 0:

H = µτz + ∆τx −Bσx.

±
(√

∆2 + µ2 ±B
)

Explain this pictorially. Similarly for 2d: obtain analogue of the p+ip superconductor.
Mention also magnetic adatoms on Pb surface and STM.
Transport signature: zero bias peak. Particle-hole symmetry dictates that we either have perfect

normal reflection, or perfect Andreev reflection at E = 0. Derive:

ψout = Rψin

ψ =

(
u(x)
v(x)

)
,

write R as:

R =

(
ree rhe
reh rhh

)

solution to the SE:

ψe(x) =

(
1
0

)
eikx +R

(
1
0

)
eikx =

(
1
0

)
eikx +

(
reee

−ikx

rehe
ikx

)
. (13)

ψh(x) =

(
0
1

)
e−ikx +R

(
0
1

)
e−ikx =

(
0
1

)
e−ikx +

(
rhee

−ikx

rhhe
ikx

)
. (14)

Clearly, these two solutions have to be p-h conjugates. Therefore

ree = r∗hh

rhe = r∗eh

R =

(
ree r∗eh
reh r∗ee

)
. (15)

Unitarity requires that

reereh + rehree = 0
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2reereh = 0.

I.e., either ree = 0 or reh = 0. This implies that there is either only normal reflection, or only
Andreev reflection.

Note also that

det(R) = |ree|2 − |reh|2 , (16)

I.e., the determinant is either −1 (in the topological phase) or 1 (trivial phase). This is general, e.g.,
it is true for any number of channels in the lead. However, in general, if there are multiple channels,
the reflection does not have to be purely Andreev or purely normal. If there is only one “dominant”
channel, then it might. Perfect Andreev reflection implies G = 2e2/h. The Kouwenhoven group claims
to have seen this experimentally.

4π periodic Josephson effect: if we have a weak link between two topological superconductors, we
can describe it in terms of the coupling (or hopping) between the two Majorana end modes, γ1,2. If
the phase difference between the two superconductors is φ, The Josephson Hamiltonian has the form

HJ = iΓeiφ/2γ1γ2 +H.c. = iΓγ1γ2 cos(φ/2). (17)

Therefore, in principle, if we apply an ac voltage, that gives φ = 2eV
~ t, we get that the peridicity of

the current (ac Josephson effect) is ω = eV
~ , i.e., half of the usual periodicity. This has the caveat that,

if we go too slowly, the usual periodicity would be recovered, because of “quasi-particle poisoning.”
Another interesting consequence of the topological degeneracy between the two states is the fact, in

a finite topological wire, there is no gap between even and odd parity states. This has been tested by
the Marcus group, using a “Coulomb blockade” setup, where current is measured through the system.
The energy of the system is of the form

E(N,VB) =
e2(N −NG)2

2C
+ f(N). (18)

where NG = CVG, the gate voltage. Usually in a superconductor,

f(N) =
1− (−1)N

2
∆. (19)

This leads to an even-odd effect in the spacing between the Coulomb blockade peaks. However, in the
Majorana wire there is no even-odd effect in the limit of a long wire. This has been observed by the
Marcus group. Even the decay of the even-odd splitting has been seen.

Another interesting consequence of having a Majorana zero mode is related to the spin. Naively,
the Majorana operator at the edge can be written as

γ = ac↑ + bc↓ + a∗c†↑ + b∗c†↓. (20)

The spinor (a, b) corresponds to a given spin direction. hence, the Majorana wavefunction has a
preferred spin. We might expect that the conductance at zero bias for the other spin flavor would be
strongly suppressed; this has been claimed to have been seen in surfaces of TIs, proximitized with a
superconductor. This argument is too naive in general, though, because it assumes that the contact
between the superconductor and the lead is just at one spatial point; at each point, the direction of
the polarization of the Majorana wavefunction can be different.
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Another effect is related to the noise. If we have a Majorana zero mode, then each Andreev reflection
is either with spin up or spin down, with probabilities |a|2 and |b|2, respectively, and it is completely
independent of the previous one. This has to be the case, because if there was “memory”, it would mean
that we can “measure” the state of the wire - whether it is parity even or parity odd - by measuring
the spin of the Andreev-reflected electron. This has interesting consequences for the current noise.
Suppose we have a measurement over a time t, and we look at the fluctuations of the charge δQ↑,
δQ↓. Since at low V the Andreev reflection becomes almost perfect, 〈(δQ↑ + δQ↓)2〉 → 0; therefore,
〈δQ↑δQ↓〉 < 0. In contrast, for a regular Andreev bound state (equivalent to two Majorana zero
modes), there is generically positive correlation between the spin up and spin down currents.

V. NON-ABELIAN PROPERTIES

Given 2N Majoranas, what is the effect of exchanging i and j?
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Can we go beyond Majorana zero modes in one spatial dimension?

Suppose we allow for arbitrary interactions (beyond mean field theory). Could we get a phase 
with zero modes that extend the behavior of Majorana zero modes, and obtain the missing 
gates for universal TQC?

The answer to this question is believed to be no. To shed light on it, it is useful to understand 
the topological phase in the wire and the nature of Majoranas in one dimension in a more 
general way.

   Jerusalem School 2016 Page 8    
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Simpler strategy to “demonstrate” the non-Abelian nature, without full braiding:

create from the vaccum two pairs of zero modes, {γ1, γ2} and {γ3, γ4}, such that initially iγ1γ2 =
iγ3γ4 = +1. Now, what is the representation of iγ2γ3 in this basis?

iγ2γ3 = i
f1 − f†1

i

(
f2 + f†2

)
. (21)

In the subspace of total even parity, {|0, 0〉, |1, 1〉}, the matrix elements of this operator are:

〈00|iγ2γ3|11〉 = 1

I.e., in this basis, where iγ1γ2 acts as σz, iγ2γ3 acts as σx. (We can also check that iγ1γ3 =

i
(
f1 + f†1

)(
f3 + f†3

)
acts as −σy.)

Therefore, if we start from iγ1γ2 = iγ3γ4 = +1 and then “fuse” γ2 and γ3 together, we get either
iγ2γ3 = ±1 with a probability of 50%, independently of how exactly the process is implemented.

VI. NOVEL PLATFORMS IN 2D SYSTEMS

F. Pientka, A. Keselman, EB, Ady Stern, A. Yacoby, B. Halperin, Phys. Rev. X (2017).

Hart et al. experiment (Yacoby group):

Shifted Fermi surfaces due to Zeeman field:
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Figure 2. (a) A Zeeman field along x shifts the two Rashba-
split Fermi surfaces of the 2DEG in opposite directions along
y. The arrows indicate the orientation of the spin at each
point on the Fermi surface. (b) The phase di↵erence, �GS,
that minimizes the ground state energy (upper panel) and
the critical current modulation (lower panel) as function of
the Zeeman field obtained numerically using a tight bind-
ing model for the system (see Appendix D 2 for details of
the model). The parameters used are: W = 5, WSC = 10,
t = 1, ↵ = 0.1, µ = �2.4, � = 0.3 [23]. Left (right) panel
corresponds to a temperature of T = 0.05� (T = 0.3�).
(Note that we set kB = 1 throughout the manuscript.) The
light blue color indicates the region in the parameter space
for which the system is in the topological phase. As the Zee-
man field is varied, the system undergoes a series of first order
topological phase transitions, in which �GS changes abruptly
between values lying in the topological and trivial regions of
the phase diagram. The critical current exhibits minima at
the points of the phase transitions. As the temperature is
increased the minima become deeper.

of the leads and the length of the junction WSC , L ! 1,
while the separation of the leads, W , remains finite. We

describe the system by a Bogoliubov–de Gennes Hamil-
tonian in the Nambu basis ( ",  #,  

†
#,� 

†
")

H =

 
k2

x � @2
y

2m
� µ +

m↵2

2

!
⌧z + ↵(kx�y + i@y�x)⌧z

+ EZ(y)�x + �(y)⌧+ + �⇤(y)⌧�. (1)

Here kx is the momentum along x which is conserved in
the system (we set ~ = 1 throughout the manuscript), m
is the e↵ective mass of the 2DEG, µ is the chemical po-
tential measured from the bottom of the spin-orbit split
bands, ↵ is the strength of Rashba spin-orbit coupling
and EZ(y) = g(y)µBB/2 is the Zeeman energy induced
by an external magnetic field. We assume di↵erent g fac-
tors in the junction and underneath the superconducting
leads and denote

EZ(y) = EZ,L✓(|y| � W/2) + EZ,J✓(W/2 � |y|), (2)

where ✓(x) is a step function. For simplicity we focus on
the case of zero Zeeman field underneath the leads and
postpone the discussion of nonzero EZ,L to Sec. III A. The
proximity induced pairing in the semiconductor 2DEG is
accounted for by

�(y) = �eisgn(y)�/2✓(|y| � W/2), (3)

where � is the phase di↵erence between the two super-
conductors. The Pauli matrices �, ⌧ act in the spin and
particle-hole basis respectively, and ⌧± = (⌧x ± i⌧y)/2.

States at subgap energies are confined to the quasi-one-
dimensional junction between the two superconducting
leads. Under suitable conditions the junction can en-
ter a one-dimensional (1d) topological superconducting
phase. We emphasize that the two-dimensional leads re-
main trivial s-wave superconductors throughout this pa-
per even when the junction is in the topological regime.
In fact, the model in Eq. (1) is insu�cient to describe
a two-dimensional topological superconductor, which re-
quires either an out-of-plane Zeeman field [15] or Dres-
selhaus spin-orbit interaction [16].

In this paper we study two experimental configurations
in which the model described by Eq. (1) and Fig. 1(a)
may be realized. In the first configuration the phase
across the junction is a parameter controlled externally
by applying a current or a magnetic flux. In the sec-
ond configuration the phase is left to self-tune so as to
minimize the ground state energy. For the first configu-
ration we calculate the phase diagram as a function of the
phase across the junction and the Zeeman field, while for
the second configuration we identify the conditions un-
der which the system self tunes to a topological phase.
We find that the critical current of the junction can be
used as a probe for the transitions between topological
and trivial phases.

We start by evaluating the topological index for
particle-hole symmetric systems in class D. As we shall

As a function of Bx, the critical current vanishes and recovers:

All the ingredients are there to realize topological superconductivity in the “wire” (the segment of
the semiconductor between the superconductors): spin-orbit coupling, broken time reversal, supercon-
ductivity!

What is the phase diagram as a function of the phase difference φ between the superconductors, and
the magnetic field?

Topological phase transition has to be accompanied with a closing of the gap (level crossing) at
kx = 0.

2
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(a) (b) (c)

Figure 1. (a) A Josephson junction is formed in a 2DEG with Rashba spin-orbit coupling by proximity coupling it to two
s-wave superconductors with relative phase di↵erence �. An in-plane magnetic field is applied parallel to the interface between
the normal and the superconducting regions. (b) The bound states spectrum in a narrow junction for kx = 0. The spectrum
in the absence of a Zeeman field is twofold degenerate and is indicated by the grey lines. In presence of the Zeeman field the
spectrum for the two spin states (plotted in red and blue) is split allowing for the appearance of a topological phase. (c) Phase
diagram as a function of the Zeeman field in the junction, EZ,J, given in units of the Thouless energy ET = (⇡/2) vF/W , and the
phase di↵erence �. The solid lines are the phase boundaries in the absence of any normal backscattering at the superconducting-
normal interface, while the dashed lines correspond to a junction transparency of 0.75, and a phase kFW + 'N = 3⇡/8 as
defined in Sec. III A. The arrows indicate the range of � values between the two zero energy crossings in (b) for which the
system is topological.

from the one discussed in Refs. [15, 16], where a two-
dimensional topological superconducting phase is real-
ized. Such a phase hosts Majorana modes propagating
along the edge of the superconductor. In our setup, the
two-dimensional superconducting leads on the two sides
of the junction are trivial. It is the quasi one-dimensional
junction region that is driven into the topological phase,
with localized Majorana end states appearing at the ends
of the junction.

On the face of it, the system we consider belongs to
class D in the ten-fold classification [17], since time-
reversal symmetry is broken and particle-hole symmetry
holds. In fact, our system has an additional symmetry
given by a combination of a mirror reflection and time-
reversal, which places it in class BDI (see also Ref. [18]).
Interestingly, this symmetry is present for any value of
the phase di↵erence between the superconductors. As
a consequence, slivers with additional topological phases
appear in the phase diagram as a function of the in-plane
Zeeman field and the phase di↵erence between the super-
conductors. The system is brought back to class D if the
magnitude of the superconducting gap on the two sides
of the junction is di↵erent.

If the phase di↵erence is not imposed externally the
system can undergo a first order phase transition in which
the phase jumps from a phase close to 0 to a phase close
to ⇡ with increasing in-plane magnetic field. Similar
transitions have previously been studied in ferromagnetic
Josephson junctions [7, 19–21]. Quite remarkably, our re-
sults suggest that such a first order phase transition in
the present setup is in fact a topological phase transi-
tion unique to the two dimensional geometry. The sys-
tem can thus self tune into a topological phase when the
magnetic field is varied and realizes a first-order topolog-

ical phase transition without gap closing. Moreover, this
transition is accompanied by a minimum of the critical
current. Therefore, the critical current can serve as an
inherent probe of the topological phase transition [22].
Surprisingly, the contrast of the critical current modula-
tion with the field increases with temperature. At high
temperatures the critical current vanishes at the mag-
netic field of the underlying zero-temperature topological
transition. This insight suggests that the experimental
results presented by Hart et al. [7] indicate an underly-
ing topological phase transition in the ground state.

This paper is organized as follows. We start by present-
ing the proposed setup and a summary of our results in
Sec. II. We then show the derivation of the phase diagram
for the system as function of the phase di↵erence and the
Zeeman field, and discuss the magnitude of the topolog-
ical gap and the appearance of Majorana end modes in
Sec. III. In Sec. IV we discuss the first order topologi-
cal phase transition as function of the Zeeman field and
how the critical current can serve as a novel experimen-
tal probe to detect this transition in the suggested setup.
We conclude with discussion of the presented results in
Sec. V. The paper is followed by appendices that cover
several technical details.

II. PHYSICAL PICTURE AND SUMMARY OF
RESULTS

We consider a two-dimensional semiconductor with
Rashba spin-orbit coupling, partially covered with two
superconducting contacts in an in-plane magnetic field as
depicted in Fig. 1(a). For the most part, we will be inter-
ested in the case of an infinite system, where the width
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Examine the spectum at kx = 0. Consider the Hamiltonian

H =
(
c†k↑ c†k↓ c−k↓ −c−k↑

)( k2
x

2m − αkxσy − µ−B(x)σy ∆(x)

∆∗(x) −(
k2
x

2m − αkxσy − µ)−B(x)σy

)



ck↑
ck↓
c†−k↓
−c†−k↑




where

∆(x) = Θ(x− w/2)eiφ/2 + Θ(−x− w/2)e−iφ/2

and

B(x) = B[Θ(w/2− x)−Θ(−w/2− x)].

First, set B = 0. Then, in the limit where µ � ∆, we get a level crossing at zero energy when
E = 0. This is not a topological transition, since it occurs simultaneously for σy = ±1.

To see that thereis a zero-energy state at φ = π, linearize the dispersion around k = kF . Moreover,
since normal reflection is suppressed, right moving electrons are only coupled to left moving holes. The
Hamiltonian takes the form

H =
(
ψ†R ψL

)( −ivF∂x ∆(x)
∆∗(x) ivF∂x

)(
ψR
ψ†L

)

Then, as we saw before, we get a zero energy state if the signs of ∆(x → ∞) and ∆(x → −∞) are
opposite. More generally, there is are in-gap Andreev bound states whose energy goes as

E = ±∆ cos(φ/2).

Now, applying a Zeeman field shifts the spin up and down levels oppositely:
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Figure 1. (a) A Josephson junction is formed in a 2DEG with Rashba spin-orbit coupling by proximity coupling it to two
s-wave superconductors with relative phase di↵erence �. An in-plane magnetic field is applied parallel to the interface between
the normal and the superconducting regions. (b) The bound states spectrum in a narrow junction for kx = 0. The spectrum
in the absence of a Zeeman field is twofold degenerate and is indicated by the grey lines. In presence of the Zeeman field the
spectrum for the two spin states (plotted in red and blue) is split allowing for the appearance of a topological phase. (c) Phase
diagram as a function of the Zeeman field in the junction, EZ,J, given in units of the Thouless energy ET = (⇡/2) vF/W , and the
phase di↵erence �. The solid lines are the phase boundaries in the absence of any normal backscattering at the superconducting-
normal interface, while the dashed lines correspond to a junction transparency of 0.75, and a phase kFW + 'N = 3⇡/8 as
defined in Sec. III A. The arrows indicate the range of � values between the two zero energy crossings in (b) for which the
system is topological.

from the one discussed in Refs. [15, 16], where a two-
dimensional topological superconducting phase is real-
ized. Such a phase hosts Majorana modes propagating
along the edge of the superconductor. In our setup, the
two-dimensional superconducting leads on the two sides
of the junction are trivial. It is the quasi one-dimensional
junction region that is driven into the topological phase,
with localized Majorana end states appearing at the ends
of the junction.

On the face of it, the system we consider belongs to
class D in the ten-fold classification [17], since time-
reversal symmetry is broken and particle-hole symmetry
holds. In fact, our system has an additional symmetry
given by a combination of a mirror reflection and time-
reversal, which places it in class BDI (see also Ref. [18]).
Interestingly, this symmetry is present for any value of
the phase di↵erence between the superconductors. As
a consequence, slivers with additional topological phases
appear in the phase diagram as a function of the in-plane
Zeeman field and the phase di↵erence between the super-
conductors. The system is brought back to class D if the
magnitude of the superconducting gap on the two sides
of the junction is di↵erent.

If the phase di↵erence is not imposed externally the
system can undergo a first order phase transition in which
the phase jumps from a phase close to 0 to a phase close
to ⇡ with increasing in-plane magnetic field. Similar
transitions have previously been studied in ferromagnetic
Josephson junctions [7, 19–21]. Quite remarkably, our re-
sults suggest that such a first order phase transition in
the present setup is in fact a topological phase transi-
tion unique to the two dimensional geometry. The sys-
tem can thus self tune into a topological phase when the
magnetic field is varied and realizes a first-order topolog-

ical phase transition without gap closing. Moreover, this
transition is accompanied by a minimum of the critical
current. Therefore, the critical current can serve as an
inherent probe of the topological phase transition [22].
Surprisingly, the contrast of the critical current modula-
tion with the field increases with temperature. At high
temperatures the critical current vanishes at the mag-
netic field of the underlying zero-temperature topological
transition. This insight suggests that the experimental
results presented by Hart et al. [7] indicate an underly-
ing topological phase transition in the ground state.

This paper is organized as follows. We start by present-
ing the proposed setup and a summary of our results in
Sec. II. We then show the derivation of the phase diagram
for the system as function of the phase di↵erence and the
Zeeman field, and discuss the magnitude of the topolog-
ical gap and the appearance of Majorana end modes in
Sec. III. In Sec. IV we discuss the first order topologi-
cal phase transition as function of the Zeeman field and
how the critical current can serve as a novel experimen-
tal probe to detect this transition in the suggested setup.
We conclude with discussion of the presented results in
Sec. V. The paper is followed by appendices that cover
several technical details.

II. PHYSICAL PICTURE AND SUMMARY OF
RESULTS

We consider a two-dimensional semiconductor with
Rashba spin-orbit coupling, partially covered with two
superconducting contacts in an in-plane magnetic field as
depicted in Fig. 1(a). For the most part, we will be inter-
ested in the case of an infinite system, where the width

The region that opens between the two level crossings has to be topological! (Note: This is inde-
pendent of the chemical potential.)

(φ,B) phase diagram:
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Figure 1. (a) A Josephson junction is formed in a 2DEG with Rashba spin-orbit coupling by proximity coupling it to two
s-wave superconductors with relative phase di↵erence �. An in-plane magnetic field is applied parallel to the interface between
the normal and the superconducting regions. (b) The bound states spectrum in a narrow junction for kx = 0. The spectrum
in the absence of a Zeeman field is twofold degenerate and is indicated by the grey lines. In presence of the Zeeman field the
spectrum for the two spin states (plotted in red and blue) is split allowing for the appearance of a topological phase. (c) Phase
diagram as a function of the Zeeman field in the junction, EZ,J, given in units of the Thouless energy ET = (⇡/2) vF/W , and the
phase di↵erence �. The solid lines are the phase boundaries in the absence of any normal backscattering at the superconducting-
normal interface, while the dashed lines correspond to a junction transparency of 0.75, and a phase kFW + 'N = 3⇡/8 as
defined in Sec. III A. The arrows indicate the range of � values between the two zero energy crossings in (b) for which the
system is topological.

from the one discussed in Refs. [15, 16], where a two-
dimensional topological superconducting phase is real-
ized. Such a phase hosts Majorana modes propagating
along the edge of the superconductor. In our setup, the
two-dimensional superconducting leads on the two sides
of the junction are trivial. It is the quasi one-dimensional
junction region that is driven into the topological phase,
with localized Majorana end states appearing at the ends
of the junction.

On the face of it, the system we consider belongs to
class D in the ten-fold classification [17], since time-
reversal symmetry is broken and particle-hole symmetry
holds. In fact, our system has an additional symmetry
given by a combination of a mirror reflection and time-
reversal, which places it in class BDI (see also Ref. [18]).
Interestingly, this symmetry is present for any value of
the phase di↵erence between the superconductors. As
a consequence, slivers with additional topological phases
appear in the phase diagram as a function of the in-plane
Zeeman field and the phase di↵erence between the super-
conductors. The system is brought back to class D if the
magnitude of the superconducting gap on the two sides
of the junction is di↵erent.

If the phase di↵erence is not imposed externally the
system can undergo a first order phase transition in which
the phase jumps from a phase close to 0 to a phase close
to ⇡ with increasing in-plane magnetic field. Similar
transitions have previously been studied in ferromagnetic
Josephson junctions [7, 19–21]. Quite remarkably, our re-
sults suggest that such a first order phase transition in
the present setup is in fact a topological phase transi-
tion unique to the two dimensional geometry. The sys-
tem can thus self tune into a topological phase when the
magnetic field is varied and realizes a first-order topolog-

ical phase transition without gap closing. Moreover, this
transition is accompanied by a minimum of the critical
current. Therefore, the critical current can serve as an
inherent probe of the topological phase transition [22].
Surprisingly, the contrast of the critical current modula-
tion with the field increases with temperature. At high
temperatures the critical current vanishes at the mag-
netic field of the underlying zero-temperature topological
transition. This insight suggests that the experimental
results presented by Hart et al. [7] indicate an underly-
ing topological phase transition in the ground state.

This paper is organized as follows. We start by present-
ing the proposed setup and a summary of our results in
Sec. II. We then show the derivation of the phase diagram
for the system as function of the phase di↵erence and the
Zeeman field, and discuss the magnitude of the topolog-
ical gap and the appearance of Majorana end modes in
Sec. III. In Sec. IV we discuss the first order topologi-
cal phase transition as function of the Zeeman field and
how the critical current can serve as a novel experimen-
tal probe to detect this transition in the suggested setup.
We conclude with discussion of the presented results in
Sec. V. The paper is followed by appendices that cover
several technical details.

II. PHYSICAL PICTURE AND SUMMARY OF
RESULTS

We consider a two-dimensional semiconductor with
Rashba spin-orbit coupling, partially covered with two
superconducting contacts in an in-plane magnetic field as
depicted in Fig. 1(a). For the most part, we will be inter-
ested in the case of an infinite system, where the width

If the system is not phase biased, as we saw, the critical current undergues a minimum at a certain
magnetic field, B ∼ ~vF

µBgw
. What happens at that field?
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Figure 10. The upper panel shows the bound state energies of the two spin species (plotted in red and blue) and the energies
of their particle-hole symmetric states (indicated by dashed lines) for a single momentum kx < kF,1 in a narrow junction, as
the Zeeman field is varied. The contribution to the ground state energy (obtained by summing over the negative energy states)
and the Josephson current are plotted for each value of Zeeman field in the lower panel in blue and green, respectively. At
EZ,J = ET/2 the value of � for which the energy is minimized shifts from 0 to ⇡. This transition is accompanied by a minumum
in the critical current.

bution of the states above the gap to the energy and
the Josephson current can not in general be neglected
[38]. However, taking the limit � ! 1 allows us to con-
sider only the bound states. Following the derivation in
Ref. [39], we find that the Josephson current in presence
of the Zeeman field is given by

I (kx, �) = 8eT

1X

p=1

(�1)
p+1 cos (2p�B) sin (p�)

sinh (⇡2pT/ET (kx))
. (13)

At zero temperature we obtain

I (kx, �) =
8e

⇡2
ET (kx)

1X

p=1

(�1)
p+1 cos (2p�B) sin (p�)

p
.

(14)
We note that since ET (kx) decreases with increasing kx

the contribution of larger kx to the critical current is
smaller. For �B = ⇡n/2 the sum over p converges to
a 2⇡ periodic sawtooth function, and the critical cur-
rent is maximal and equal to Ic,max (kx) = 4eET (kx) /⇡.
For �B = (⇡/2) (n + 1/2), all the odd harmonics are ab-
sent and we obtain a ⇡ periodic sawtooth function of
half the amplitude, i.e., Ic,min (kx) = Ic,max (kx) /2 =
2eET (kx) /⇡. Note that also in this case the minima of
the critical current occur at the values of the Zeeman field
for which the minimum of the energy switches between
being at � = 0 and � = ⇡, as can be seen by integration
of the Josephson current over �.

In the high temperature limit, which in this case cor-
responds to T � ET (kx), once again only the first har-
monic is left:

I (kx, �) = 4eTe�⇡2T/ET (kx) cos (2�B) sin (�) , (15)

resulting in a vanishing current for �B = (⇡/2) (n + 1/2).
Note also that the critical current contribution from
larger kx is suppressed more strongly at finite temper-
atures.

We now lift the constraint ↵kF ⌧ µ, and consider the
contribution of momenta kF,1 < kx < kF,2 to the ground
state energy. For simplicity, in this analysis, we will once
again consider the limit of an ultra-narrow junction, � ⌧
1/(mW 2). For kx > kF,1, there is a single spin species in
the system and the energy of the corresponding bound
state is given by E� = �cos (�B � �/2) (assuming ↵ >
0). Upon integration of the energy over kx from �kF,2

to kF,2 we obtain

EGS =

� �L

⇡

✓����cos

✓
�

2
+ �B

◆���� kF,1 +

����cos

✓
�

2
� �B

◆���� kF,2

◆
.

(16)

This function is depicted in Fig. 11 for several values
of EZ,J and kSO/kF. Concentrating on �B  ⇡/2 and
�  ⇡, we find that this function can have two local
minima at � = �1,2 given by

tan
�1

2
= tan�B

kSO

kF
0  �1  ⇡ � 2�B

cot
�2

2
=

kSO

kF + (tan�B � 1) kSO
⇡ � 2�B  �2  ⇡.

(17)

At �B = ⇡/4, or equivalently EZ,J = ET/2, it can be
shown that �1 + �2 = ⇡, and that EGS (�1) = EGS (�2).
We can therefore conclude that at this value of the Zee-
man field a first order phase transition occurs with the

This is a first-order quantum phase transition from a state with φ ≈ 0 to a state with φ ≈ π; the
latter is the topological state, that has Marjoana zero modes at its ends.

VII. BEYOND MAJORANAS

The outstanding question is: how to go beyond Majorana fermions? I.e., how to get non-Abelian
topological states that have richr braiding properties, possibly even universal?

One strategy is to hope to get lucky. However, nature has not been extremely generous in providing
topologically ordered states. There is now good evidence that such a state occurs in the quantum
Hall platea at ν = 5/2 (in particular, the thermal conductance is κ/T ≈ 1

2π
2k2B/3h, “half” of the

natural value.) But even if this is confirmed, it is still the Moore-Read state, that does not support
non-Abelian statistics beyond that of Majoranas.

Another way is to take existing ingredients and two to engineer them in new ways. (This approach
has fruitful in the Majorana case!). It turns out that, quite generally, topologically ordered Abelian
phases can support “defects” (such as special kinds of domain walls, lattice dislocations, etc - see
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examples below) that support non-Abelian statistics. This non-Abelian statistics can “enrich” the
behavior of the original phase.

One example is the case of the edge of a “fractional topological insulator”, or equivalently, a “trench”
in a fractional quantum Hall state.

L3a
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   Jerusalem School 2016 Page 1    

There are three phases of the edge (thought of as a one-dimensional system): gapless, a phase
dominated by normal tunneling, and a phase dominated by Cooper pair tunneling due to the proximity
to the superconductor.

What happens at the interface between the two gapped phases?

L3a
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New type of zero mode: “Fractionalized Majoranas” or “parafermions”!
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In the superconduting regions on the edge, a pair of quasi-particles from the bulk can be added with
zero energy cost.

In the normal regions, a quasi-particle-quasi hole pair can be added with zero energy cost.

   Jerusalem School 2016 Page 3    

This non-contractable loop is describe by an operator acting on the zero-energy subspace. Moreover,
operators corresponding to different non-contractable loops do not commute:

   Jerusalem School 2016 Page 3    

This mandates a ground state degeneracy of at least m per superconducting domain. I.e., each SC-
normal interface carries a “zero mode” with quantum dimension

√
m. A more careful analysis shows

that there is also a Marjoana zero mode at the interface; the true quantum dimension is, in fact,
√

2m.
A braiding operation of interfaces can be defined, similarly to the Majorana case.

   Jerusalem School 2016 Page 2    
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This operation turns out to be non-universal, as in the Majorana case. However, defects enrich
the properties of the underlying topologically ordered phase. In the case above, we started from an
Abelian phase and ended with a non-Abelian one. In the case of a phase which is already non-Abelian,
the properties are enriched further. For example, there are cases where one starts with a non-Abelian
but non-universal phase, and ends with a universal one.


