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I. PLAN

In these lectures, I will touch upon these topics:

1. A Few words about topological order.

2. p-wave superconductors

3. Kitaev chain

4. Experimental platforms: TI surfaces, nanowires, 2d systems.

5. Signatures: conductance, spin, topological Josephson Junctions.

6. Topological superconductivity in a planar Josephson junction (Yacoby’s experiment)

7. Beyond Majorana

II. TOPOLOGICAL STATES OF MATTER

Most broad definition: gapped quantum states of matter that do not spontaneously break any sym-
metry of the Hamiltonian, yet they are distinct from a trivial “atomic” insulator. There is necessarily
a phase transition between the two phases. “Hidden” (non-local or “topological”) order encoded in the
ground state wavefunction. Often (but not always), these states have topologically protected gapless
edge states, that cannot be removed unless the bulk is destroyed (i.e., undergoes a phase transition to
a different phase).

Examples:

1. Topological insulators in 2D and 3D, Haldane S = 1 chain. These are “symmetry protected
topological phases” they are distinct from an atomic band insulator as long as some symmetry
is maintained.

2. The integer quantum Hall effect.

A further useful distinction to make is between topologically ordered states and other “topological”
states. A prime example of a topologically ordered state is the fractional quantum Hall state in d = 2.
The topological ordered ones are characterized by several common features:

1. These states support collective “point-like” excitations (quasi-particles) that obey fractional
statistics, i.e., they are anyons. These excitations often (but not always) carry fractional quantum
numbers.



2. The ground state has a non-trivial, topologically protected degeneracy that depends on the
topology of the manifold on which the system lives. The ground state wavefunction is able to
“sense” the topology of the surface.

Perhaps the most interesting of these states are non-Abelian states, in which there is a topologically
protected degeneracy that grows exponentially with the number of quasi-particle excitations. Each
such quasi-particle has its own characteristic degeneracy. Exchange of two quasi-particles implements
a unitary matrix on the degenerate subspace, and different unitary matrices do not commute, hence
the name. Topologically ordered states can only appear in strongly interacting systems.

In these lectures, we will discuss topological states of matter that do not exactly fit into either of
these categories. The states we will discuss appear in superconductors, and can (for the most part)
be described in terms of non-interacting, quadratic Hamiltonians (more precisely, to describe them, it
is enough to consider the interactions at the mean field level). Nevertheless, they have some of the
characteristics that we associate with topological order: they are not symmetry protected, and they can
have topologically protected ground state degeneracies of non-local origin. These degeneracies are not
related to the topology of the manifold the system lives on. Rather, they are associated with defects,
such as edges, vortices, or dislocations. Moreover, there is a well-defined sense in which “braiding” can
be performed (even though we are not dealing with point particles), and the result of the braiding
operation is a topologically protected non-Abelian operation.

Over the last decade, there has been significant progress in realizing some of these systems experi-
mentally. We will discuss the experimental platforms and the physical signatures of these states.

III. BDG FORMALISM AND P-WAVE SUPERCONDUCTORS.
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1d p-wave Hamiltonian:



H = (—2tcosk — u) chk + Asin kmcicik + h.c. (1)
Phase transition at u = +2¢, at k, = 0, k, = 7, respectively.

Change p slowly in space. Write dp = p — 2t. For small k, expand to first order in kxs around
k=0:

H < —op(z) —iAd, > 2)

—iAD, Ou(x)
Write as

H = —p(z)r* — AT%i0,. (3)

Look for zero energy solution:
[—op(a)r* — iAT"D,] ¢ = 0 (4)

Multiply by ir%:

[0p(z)7¥ + Ady]p = 0 ()
= e I EE (6)

This can be normalized at +oo (with an appropriate choice of the eigenvalue of 7¥) if p(4o00) have
opposite signs.

(From here, we can derive the dispersing edge states of the 2d case, and the vortex states.)

Derive the fact that the ground state parity is opposite for the two b.c.’s in one phase, and the same
in another phase, by looking at quantized momenta. Relate this to the existence of the zero modes.

Discuss the ground state degeneracy, and how to construct it.

Kitaev’s chain:

H= Z —tc;f»cj_H + Ac}c}H +He — ,uc}cj (1)
J

Write in terms of Majorana operators:

af = a, ,BT =f, {i, B} = dij



H=> —t(oj — i) (ajs1 +iBjs1) + Aoy — iBy) (a1 — iBj41) + Hoe. — play — i) (e + iB;)
J

=Y —2t(ia;Bi41 — iBjaspn) + 2A(—iay B — iBjay11) — plioy B — iBjay)
J

Z 2t + 2A ZOz],B]_H + (Qt — 2A)zﬁ]a]+1 (Z'Oéjﬂj — iﬂjaj). (10)
J

Majoranas at the ends:

VL,L =VR,L- (11)

Argue for: 1. The phase is characterized by the change in the parity of the ground state when a
flux is inserted. 2. Phase transition (in non-interacting system) must occur by closing and re-opening
of the gap at either k = 0 or at k = 7. (g.s. parity has to switch at one of these points.)

If we have two phases, one where the parity of the ground state changes when we insert a flux and
one where it does not, then we cannot go adiabatically between the two. This is true even in the
presence of interactions. This is because, as we go from one phase to the other, then at least in one
boundary condition sector, the ground state parity would have to switch, which implies that the gap
has to close.

Key properties:

1. Ground state is two fold degenerate. [y r, H] =0, [ivLyr, H] = 0.
2. 1yLyr is the total fermion parity of the ground state.

3. No local way to detect which ground state the system is in. (Any local observable is the same
in the two ground states!)

IV. EXPERIMENTAL REALIZATIONS AND SIGNATURES

Rule of thumb: whenever we have a single Fermi surface in the normal state, if we manage to gap
it, we will get a topological superconducting state.

Example: Fu-Kane superconductor, in either 1d or 2d.

Oreg-Lutchyn-von Oppen-Refael-Sau-das Sarma wire:

Necessary ingredients: 1. Spin-orbit coupling. 2. Breaking of time reversal symmetry. 3. supercon-
ductivity.

k,2
H:c (2m—akz oY —u— Bo® )ck—i—AcLTcLi (12)

Write BAG Hamiltonian:

Ci

k2 ;
H:(cL e —cfm) zm ~ Okeo? mp = Bt A i
TR A —(2% — akyo¥ — u) — Bo® Ckai



Hamiltonian at k = 0:
H = ur? + At — Bo”.

i(\/miB)

Explain this pictorially. Similarly for 2d: obtain analogue of the p+ip superconductor.

Mention also magnetic adatoms on Pb surface and STM.
Transport signature: zero bias peak. Particle-hole symmetry dictates that we either have perfect

normal reflection, or perfect Andreev reflection at £ = 0. Derive:

/wout = R¢zn

write R as:

solution to the SE:
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2r¢eTen = 0.

Le., either .. = 0 or rop, = 0. This implies that there is either only normal reflection, or only
Andreev reflection.
Note also that

det(R) = |ree|” — |ren]?, (16)

Le., the determinant is either —1 (in the topological phase) or 1 (trivial phase). This is general, e.g.,
it is true for any number of channels in the lead. However, in general, if there are multiple channels,
the reflection does not have to be purely Andreev or purely normal. If there is only one “dominant”
channel, then it might. Perfect Andreev reflection implies G = 2¢2 /h. The Kouwenhoven group claims
to have seen this experimentally.

47 periodic Josephson effect: if we have a weak link between two topological superconductors, we
can describe it in terms of the coupling (or hopping) between the two Majorana end modes, 1 2. If
the phase difference between the two superconductors is ¢, The Josephson Hamiltonian has the form

Hjy = iTe'?y vy + H.c. = ilyyy; cos(¢/2). (17)

Therefore, in principle, if we apply an ac voltage, that gives ¢ = 2‘;;1‘/15, we get that the peridicity of
the current (ac Josephson effect) is w = %, i.e., half of the usual periodicity. This has the caveat that,
if we go too slowly, the usual periodicity would be recovered, because of “quasi-particle poisoning.”

Another interesting consequence of the topological degeneracy between the two states is the fact, in
a finite topological wire, there is no gap between even and odd parity states. This has been tested by
the Marcus group, using a “Coulomb blockade” setup, where current is measured through the system.
The energy of the system is of the form

62(N — Ng)2

E(N,Vp) = 5C

+ f(N). (18)

where Ng = CVg, the gate voltage. Usually in a superconductor,
=——A. (19)

This leads to an even-odd effect in the spacing between the Coulomb blockade peaks. However, in the
Majorana wire there is no even-odd effect in the limit of a long wire. This has been observed by the
Marcus group. Even the decay of the even-odd splitting has been seen.

Another interesting consequence of having a Majorana zero mode is related to the spin. Naively,
the Majorana operator at the edge can be written as

v =act +bey + a*ci + b*ci. (20)

The spinor (a,b) corresponds to a given spin direction. hence, the Majorana wavefunction has a
preferred spin. We might expect that the conductance at zero bias for the other spin flavor would be
strongly suppressed; this has been claimed to have been seen in surfaces of TIs, proximitized with a
superconductor. This argument is too naive in general, though, because it assumes that the contact
between the superconductor and the lead is just at one spatial point; at each point, the direction of
the polarization of the Majorana wavefunction can be different.



Another effect is related to the noise. If we have a Majorana zero mode, then each Andreev reflection
is either with spin up or spin down, with probabilities \a|2 and |b|?, respectively, and it is completely
independent of the previous one. This has to be the case, because if there was “memory”, it would mean
that we can “measure” the state of the wire - whether it is parity even or parity odd - by measuring
the spin of the Andreev-reflected electron. This has interesting consequences for the current noise.
Suppose we have a measurement over a time ¢, and we look at the fluctuations of the charge 6@,
8Q,. Since at low V the Andreev reflection becomes almost perfect, ((6Q+ + 6Q)%) — 0; therefore,
(0Q+6Q,) < 0. In contrast, for a regular Andreev bound state (equivalent to two Majorana zero
modes), there is generically positive correlation between the spin up and spin down currents.

V. NON-ABELIAN PROPERTIES

Given 2N Majoranas, what is the effect of exchanging ¢ and j7
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Simpler strategy to “demonstrate” the non-Abelian nature, without full braiding:

create from the vaccum two pairs of zero modes, {v1,72} and {v3,74}, such that initially iy1ve =
ivv3v4 = +1. Now, what is the representation of iv2y3 in this basis?

gt
1723 = ZM <f2 + ng) . (21)

2

In the subspace of total even parity, {|0,0),|1,1)}, the matrix elements of this operator are:
(00[iv2ys[11) =1

Le., in this basis, where iy,72 acts as 0%, iy27y3 acts as o”. (We can also check that iy1y3 =
1 <f1 —|—f1T> (fg —l—f;) acts as —o¥.)

Therefore, if we start from iy;v, = iy374 = +1 and then “fuse” 2 and 3 together, we get either
1723 = =1 with a probability of 50%, independently of how exactly the process is implemented.

VI. NOVEL PLATFORMS IN 2D SYSTEMS

F. Pientka, A. Keselman, EB, Ady Stern, A. Yacoby, B. Halperin, Phys. Rev. X (2017).
Hart et al. experiment (Yacoby group):

V (AC+DCQ)

Shifted Fermi surfaces due to Zeeman field:
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As a function of By, the critical current vanishes and recovers:

Resistance (Q2)

250
200
150
100

50

B, (mT)

All the ingredients are there to realize topological superconductivity in the “wire” (the segment of
the semiconductor between the superconductors): spin-orbit coupling, broken time reversal, supercon-
ductivity!

What is the phase diagram as a function of the phase difference ¢ between the superconductors, and
the magnetic field?

Topological phase transition has to be accompanied with a closing of the gap (level crossing) at
k. = 0.
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Examine the spectum at k, = 0. Consider the Hamiltonian

Crt
k2
= _ qkyo¥ —u—B Y A Ck|
H= ( CLT cLi C k) —C_kp ) am — WeT K (z)o 2 (z) ol
A*(z) —(5% — akyo¥ — p) — B(x)o¥ kai
—cl
where
A(z) = Oz — w/2)e'?? + O(—z — w/2)e1?/?
and

B(z) = B[O(w/2 —z) — O(—w/2 — z)].

First, set B = 0. Then, in the limit where p > A, we get a level crossing at zero energy when
E = 0. This is not a topological transition, since it occurs simultaneously for ¢¥ = +1.

To see that thereis a zero-energy state at ¢ = m, linearize the dispersion around k = kr. Moreover,
since normal reflection is suppressed, right moving electrons are only coupled to left moving holes. The
Hamiltonian takes the form

H= (g}, w)(_ﬁf@% ﬁﬁ?) (E)

Then, as we saw before, we get a zero energy state if the signs of A(x — o0) and A(z — —o0) are
opposite. More generally, there is are in-gap Andreev bound states whose energy goes as

E = +Acos(¢/2).

Now, applying a Zeeman field shifts the spin up and down levels oppositely:

(b)
A

The region that opens between the two level crossings has to be topological! (Note: This is inde-
pendent of the chemical potential.)
(¢, B) phase diagram:
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2

0

L ] )
If the system is not phase biased, as we saw, the critical current undergues a minimum at a certain
magnetic field, B ~ £ What happens at that field?

HBgw '’
EEZJ =0 EZ,.] = ET/4 EZ’J = ET/2 EZ,J = 3ET/4 EZ,J = ET
A 73 s~ - -
0
_AO 0 T 27
0 I/Q«eA
A 0
9 N
™ 2m T 2m T 2m T 27 T 27

This is a first-order quantum phase transition from a state with ¢ ~ 0 to a state with ¢ =~ 7; the
latter is the topological state, that has Marjoana zero modes at its ends.

VII. BEYOND MAJORANAS

The outstanding question is: how to go beyond Majorana fermions? I.e., how to get non-Abelian
topological states that have richr braiding properties, possibly even universal?

One strategy is to hope to get lucky. However, nature has not been extremely generous in providing
topologically ordered states. There is now good evidence that such a state occurs in the quantum
Hall platea at v = 5/2 (in particular, the thermal conductance is /T ~ i72k%/3h, “half” of the
natural value.) But even if this is confirmed, it is still the Moore-Read state, that does not support
non-Abelian statistics beyond that of Majoranas.

Another way is to take existing ingredients and two to engineer them in new ways. (This approach
has fruitful in the Majorana case!). It turns out that, quite generally, topologically ordered Abelian
phases can support “defects” (such as special kinds of domain walls, lattice dislocations, etc - see
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examples below) that support non-Abelian statistics. This non-Abelian statistics can “enrich” the
behavior of the original phase.

One example is the case of the edge of a “fractional topological insulator”, or equivalently, a “trench”
in a fractional quantum Hall state.

Beyond Majorana fermions

Fractional quantum Hall "realizations”
of a Fractional Topological Insulator

i 2 FQH sTaTe\ \\ *
T v=1im /
Ay
/ v=—1lm‘ —_—

~ ¢ tunneling

Lindner, EB, Stern, Refael (2013):
Clarke, Alicea, Shtengel (2013);
Cheng (2013)

There are three phases of the edge (thought of as a one-dimensional system): gapless, a phase
dominated by normal tunneling, and a phase dominated by Cooper pair tunneling due to the proximity
to the superconductor.

What happens at the interface between the two gapped phases?
<\—

l V:Mi"f‘ 7
R

T (m= ou
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New type of zero mode: “Fractionalized Majoranas” or “parafermions”
yp J P
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In the superconduting regions on the edge, a pair of quasi-particles from the bulk can be added with
zero energy cost.
In the normal regions, a quasi-particle-quasi hole pair can be added with zero energy cost.
Fractionalized zero modes at
“twist defects” in topological phases
Ends of line defects that interchange anyon types
("topological symmetry”)

s B v=1/3
N /
- 7 v=1/3
—q U q

The “defect line” can permute anyon types.

This non-contractable loop is describe by an operator acting on the zero-energy subspace. Moreover,
operators corresponding to different non-contractable loops do not commute:

Re lotion +4o Clwﬂm‘l‘um dimensipn :

w e
2 m W2
-r O—a® ®
e £
™ ™M
i .
WiW, = €7 W, w, =5 GS 1s at least mo dold degenerate |

This mandates a ground state degeneracy of at least m per superconducting domain. I.e., each SC-
normal interface carries a “zero mode” with quantum dimension y/m. A more careful analysis shows
that there is also a Marjoana zero mode at the interface; the true quantum dimension is, in fact, v/2m.

A braiding operation of interfaces can be defined, similarly to the Majorana case.

. M Ao N
Usy = exp (I*(23> = exp (/ (/f,)
2 77 2m " °

1
Q2= —qa, qq2=0,..., 2m — 1
m

Example: m=3 ¢ =2p+3¢ (p=0,1,2, ¢=0,1)

U- —e'{)(fz(2>—€“()(—i£(2>€¥) 1'2—/—“)")
34 X] 6.1-_) °X] 21 °X] 31

(Majorana) ® (Something new!)
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This operation turns out to be non-universal, as in the Majorana case. However, defects enrich
the properties of the underlying topologically ordered phase. In the case above, we started from an
Abelian phase and ended with a non-Abelian one. In the case of a phase which is already non-Abelian,
the properties are enriched further. For example, there are cases where one starts with a non-Abelian
but non-universal phase, and ends with a universal one.



