Topologically protected states at domain walls in bilayer graphene

Marta Zuzanna Pelc
DIPC / CFM San Sebastián, Spain

Capri Spring School 28.04.2017

Leonor Chico

ICMM (CSIC)

Madrid

Włodek Jaskólski

NCU

Toruń

Andres Ayuela

DIPC/CFM (EHU/CSIC)

San Sebastián

What are the domain walls in bilayer graphene?

Boundaries between regions with different properties

Magnetic moments
Gate voltage sign

★ Stacking etc.

Why do we investigate domain walls in graphene?

- OCCUT spontaneously intentionally
- affect transport
 no conductance between
 the domains
 domain wall conducting
 channel

Aberration-corrected annular dark-field STEM

Suspended doublegated BL graphene

Alden – PNAS (2013) Bao – PNAS (2012)

Two terminal differential conductivity vs. back-gate voltage

Why do we investigate domain walls in graphene?

- OCCUT spontaneously intentionally
- affect transport
 no conductance between
 the domains
 domain wall conducting
 channel

Dual-gated field effect transistor devices on BLG with AB-BA domain walls (green line) **LETTER**

ai:10 1029/natura14264

Topological valley transport at bilayer graphene domain walls

 $Long \ Ju^{1*}, Zhiwen \ Shi^{1*}, Nityan \ Nair^{1}, Yinchuan \ Lv^{1}, Chenhao \ Jin^{1}, Jairo \ Velasco \ Jr^{1}, Claudia \ Ojeda-Aristizabal^{1}, Hans \ A. \ Bechtel^{2}, Michael \ C. \ Martin^{2}, Alex \ Zettl^{1,3,4}, James \ Analytis^{1,3,4} \ \& \ Feng \ Wang^{1,3,4}$

Ju - Nature (2015)

π-electron TB + Green functions

in-plane: nearest neighbor approx.

interplane: hopping for overlapping atoms

GFMT: Landauer-Büttiker formalism

Phys. Rev. B **92**, 085433 (2015)

Phys. Rev. B **92**, 085433 (2015)

Topology

In(LDOS)

symmetry-protected topological state differece of "valley" Chern numbers = 2 robust (insensitive to local impurities)

$$OK' \quad n_{AB} = -1$$

$$n_{BA} = +1$$

$$onumber 1
onumber 1
onumber$$

$$N_T \approx \pi \cdot N_B$$

Local Density of States at the boundary

Phys. Rev. B 92, 085433 (2015)

Local Density of States at the boundary

Phys. Rev. B 92, 085433 (2015)

$$N_B = 30$$

$$N_T = 48$$

$$N_B = 30$$
 $V = 0.3 \text{ eV}$

Local Density of States at the boundary

no stacking change

In(LDOS)

Conductance along the fold

$$N_B = 6$$

$$N_T = 10$$

$$d = 10$$

$$G(E_F) = 4$$

with stacking change

no stacking change

Phys. Rev. B 92, 085433 (2015)

Defectless boundaries

"as long as we do not mix the sublattices"

San-Jose — PNAS (2014), Vaezi — PRX (2013) Katsnelson — PRB (2008)

Grain boundaries

Huang - Nature (2011), Yu - Nat Mater. (2011), Pelc - PRB (2013)

Grain stacking boundary

Nanoscale **8**, 6079 (2016)

Nanoscale 8, 6079 (2016)

Localization

different layers

Defect (D) and TPS (S1) coexist when they are localized on different nodes

Defect (D) and TPS (S3) hybridize when they are localized on same nodes

same layers

same sublattices

Summary

Abrubt connection

The appearance of 2 TPS (Chern numbers)

Defectless, smooth transitions

More gap states (anticrossings)

2 TPS not affected (Chern numbers)

Grain boundaries with defects

Interaction between TPS and defect state
Asymetry in number gap states for different
polarization – potential electrical switches

Phys. Rev. B 92, 085433 (2015) Nanoscale 8, 6079 (2016)

COLLABORATORS

Andres Ayuela

DIPC/CFM (EHU/CSIC)

San Sebastián

Leonor Chico

ICMM (CSIC)

Madrid

Włodek Jaskólski

NCU

Toruń

Supported by:

The Basque Government and University of the Basque Country – ELKARTEK project(SUPER) (Grant No. IT-756-13)