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III.1 Introduction to embedding quantum simulators



a) A one-to-one quantum simulator is a device that uses a two-level system to mimic 

a two-level system and a harmonic oscillator to mimic a harmonic oscillator. 

This may not be the clever approach when scaling up quantum simulations. 

b) An embedding quantum simulator (EQS) is a device that embeds the original dynamics 

into an enlarged Hilbert space to enhance and optimize the extraction of information. 

EQS merge the concepts of quantum simulation with quantum computing.

Whats is an embedding quantum simulator?
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K ŨK

An enlarged space is a Hilbert space where forbidden operations 
are encoded in physical operations. 
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III.2 Quantum simulation of antilinear operations and the Majorana equation
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We design a quantum simulator for the Majorana equation, a non-Hamiltonian relativistic wave

equation that might describe neutrinos and other exotic particles beyond the standard model. Driven by

the need of the simulation, we devise a general method for implementing a number of mathematical

operations that are unphysical, including charge conjugation, complex conjugation, and time reversal.

Furthermore, we describe how to realize the general method in a system of trapped ions. The work opens a

new front in quantum simulations.

DOI: 10.1103/PhysRevX.1.021018 Subject Areas: Quantum Physics, Optics

A quantum simulator is a device engineered to reproduce
the properties of an ideal quantum model. This still-
emerging topical area has generated a remarkable exchange
of scientific knowledge between apparently unconnected
subfields of physics. In terms of applications, it allows for
the study of quantum systems that cannot be efficiently
simulated on classical computers [1]. While a quantum
computer could in principle implement a universal quantum
simulator [2], only particular systems have been simulated
up to now using dedicated quantum simulators [3]. Still,
there is a wealth of successful cases, such as spin models
[4,5], quantum chemistry [6], and quantum phase transi-
tions [7]. The quantum simulation of fermionic systems [8]
and relativistic quantum physics have also attracted recent
attention, reproducing dynamics and effects that are cur-
rently out of experimental reach. Examples include black
holes in Bose-Einstein condensates [9], quantum field theo-
ries [10,11], and recent quantum simulations of relativistic
quantum effects such as Zitterbewegung and the Klein
paradox [12–16] in trapped ions.

In this paper, we show how the Majorana equation [17]
can be simulated in an analog quantum simulator, having
the implementation of complex conjugation of the wave
function as a key requirement. In this manner, we are able
to propose a general scheme for implementing this and
other unphysical operations, such as charge conjugation
and time reversal. The implementations constitute a novel
toolbox of accessible quantum operations in the general
frame of quantum simulations. While quantum simulators

may soon realize calculations that are impossible for
classical computers, we show here the possibility of im-
plementing quantum dynamics that do not occur in the real
space-time quantum world.
The Majorana equation is a relativistic wave equation

for fermions where the mass term contains the charge
conjugate of the spinor, c c,

i@6@c ¼ mcc c: (1)

Here, 6@ ¼ !"@" and !" are the Dirac matrices [18], while
the non-Hamiltonian character stems from the simulta-
neous presence of c and c c. The significance of the
Majorana equation lies in the fact that it can be derived
from first principles in a similar fashion as the Dirac
equation [17,19]. Both wave equations are Lorentz invari-
ant but the former preserves helicity and does not admit
stationary solutions. The Majorana equation is considered
a possible model [20] for describing exotic particles in
supersymmetric theories—photinos and gluinos—or in
grand unified theories, as with the case of neutrinos.
Indeed, the discussion of whether neutrinos are Dirac or
Majorana particles still remains open [21]. Despite the
similar naming, however, this work is neither related to
the Majorana fermions (modes) in many-body systems
[22,23], nor to the Majorana fermions (spinors) in the
Dirac equation [20,24].
In order to simulate the Majorana equation, we have

to solve a fundamental problem: the physical implementa-
tion of antilinear and antiunitary operations in a quantum
simulator. Here, we introduce a mapping [25] by which
complex conjugation, an unphysical operation, becomes
a unitary operation acting on an enlarged Hilbert
space. The mapping works in arbitrary dimensions and
can be immediately applied on different experimental
setups. We show how to simulate the Majorana equation
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A quantum simulator is a device engineered
to reproduce the properties of an ideal quantum
model. It allows the study of quantum systems
that cannot be e�ciently simulated on classical
computers1. While a universal quantum com-
puter is also a quantum simulator2, only partic-
ular systems have been simulated up to now3.
Still, there is a wealth of successful cases, such as
spin models4,5, quantum chemistry6, relativistic
quantum physics7–11 and quantum phase transi-
tions12. Here, we show how to design a quantum
simulator for the Majorana equation13, a non-
Hamiltonian relativistic wave equation that might
describe neutrinos and other exotic particles be-
yond the standard model14,15. The simulation de-
mands the implementation of charge conjugation,
an unphysical operation that opens a new front in
quantum simulations, including the discrete sym-
metries associated with complex conjugation and
time reversal. Finally, we show how to implement
this general method in trapped ions.

The Majorana equation13 is a relativistic wave equa-
tion for fermions where the mass term contains the charge
conjugate of the complex spinor, ⇤c,

i~⌥/⇤ = mc⇤c. (1)

Here, ⌥/ = �µ⌥µ and �µ are the Dirac matrices16, while
the non-Hamiltonian character stems from the simultane-
ous presence of ⇤ and ⇤c. The significance of the Majo-
rana equation rests on the fact that it can be derived
from first principles in a similar fashion as the Dirac
equation13,14. Both wave equations are Lorentz invari-
ant but the former preserves helicity and does not enjoy
stationary solutions. The Majorana equation is consid-
ered a possible model15 for describing exotic particles
in supersymmetric theories –photinos and gluinos–, or in
grand unified theories, as is the case of neutrinos. Indeed,
the discussion of whether neutrinos are Dirac or Majo-
rana particles still remains open17. Relativistic quantum
models can be simulated, but they can also emerge as a
natural description of certain systems, as happens with
the 2+1 Dirac equation in graphene systems18,19. Never-
theless, note that despite the similar naming, this work
is neither related to the Majorana fermions (modes) in
many-body systems20,21, nor to the Majorana fermions

(spinors) in the Dirac equation15.
In order to simulate physics described by the Majo-

rana equation, we have to solve a fundamental problem:
the physical implementation of antilinear and antiunitary
operations in a quantum simulator. In this work, we in-
troduce a mapping by which complex conjugation, an
unphysical operation, becomes a unitary operation act-
ing on an enlarged Hilbert space. The mapping works in
arbitrary dimensions and can be immediately applied on
advanced quantum simulation platforms. As a key ap-
plication, we show how to simulate the Majorana equa-
tion in 1+1 dimensions and other unphysical operations
–time reversal and complex conjugation– using only two
trapped ions. This is completed with a recipe for mea-
suring relevant observables and a roadmap towards more
general scenarios, including the combination of Majorana
and Dirac physics. Finally, we discuss further scopes of
quantum simulations in the context of fundamental and
relativistic quantum physics.
There are three discrete symmetries22 which are cen-

tral to quantum mechanics and our understanding of
particles, fields and their interactions: parity, P, time
reversal, T , and charge conjugation, C. None of these
operations can be carried out in the real world: P in-
volves a global change of the whole physical space, while
C and T are antiunitaries. However, there is no appar-
ent restriction for implementing them in a physical sys-
tem that simulates quantum mechanics. We will focus
on the study of antiunitary operations, which can be de-
composed into a product of a unitary, UC or UT , and
complex conjugation, K⇤ = ⇤�. We consider the map-
ping of the quantum states of an n-dimensional complex
Hilbert space, Cn, onto an real Hilbert space, R2n,

⇤ ⌅ Cn ⇤ � =
1

2

�
⇤ + ⇤�

i(⇤� � ⇤)

⇥
⌅ R2n. (2)

This mapping can be physically implemented by means of
an auxiliary two-level system, such that R2n ⌅ H2 ⇥Hn.
In this manner, the complex conjugation of the simulated
state becomes a local unitary VK acting solely on the
ancillary space,

K⇤ = ⇤� ⇤ VK� = (⇥z ⇥ 11)�, (3)

and thus physically implementable. Furthermore, uni-
taries and observables can be also mapped onto the real

The Majorana equation 

Ettore Majorana

The Majorana equation is a relativistic wave equation where 
the mass term contains the charge conjugate of the spinor,

The simultaneous presence of      and       makes impossible 
to factorize and produce a Hamiltonian equation 
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The Majorana equation at 1+1 dimensions
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becomes a local unitary VK acting solely on the ancillary space, K =  ⇤ ! VK =

(�z⌦I) , and thus physically implementable for a wavefunction of arbitrary dimensions.

Furthermore, unitaries and observables can also be mapped onto the real space, O !
⇥ = I ⌦ Or � i�y ⌦ Oi, where Or = 1
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(O � KOK), preserving

unitarity and Hermiticity. The proposed simulator also accommodates the antiunitary

operations C = UCK and T = UT K. To this end, we have to choose a particular

representation that fixes the unitaries UC and UT , as will be shown below.

We possess now the basic tools to simulate the Majorana equation (7.1). The expres-

sion for the charge conjugate spinor is given by  c = W�0K , with W a unitary matrix

satisfying W�1�µW = � (�µ)T . We illustrate now the proposed quantum simulation

with the case of 1+1 dimensions. Here, a suitable representation of charge conjugation

is  c = i�y�z ⇤, that is W = i�y, and the Majorana equation reads

i~@t = c�xpx � imc2�y 
⇤, (7.3)

where px = �i~@x is the momentum operator. Note that Eq. (7.3) is not Hamiltonian,

(i~@t 6= H ). This is due to the presence of a complex conjugate operation in the

right-hand side of Eq. (7.3), which is not a linear Hermitian operator. In particular, our

mapping of Eq (7.2) for n=2 reads
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where  r,i
1,2 are the real and imaginary parts of  

1

and  
2

respectively. Surprisingly,

the non-Hermitian Majorana equation for a complex spinor becomes a 3+1-dimensional

Dirac equation for a four-component real bispinor,

i~@t =
⇥
c(I ⌦ �x)px � mc2�x ⌦ �y

⇤
 . (7.5)

with dimensional reduction, py, pz = 0. Here, the dynamics preserves the reality

of the bispinor  and cannot be reduced to a single 1+1 Dirac particle. In general,

the complex-to-real map in arbitrary dimensions transforms a Majorana equation into

H = c�
x

p
x

� imc2�
y

K H† 6= H

 6⌘ ei' 

The Majorana equation violates one of the axioms of Quantum Mechanics  

Breaking the rules quantum physics 
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unitary operator and thus decomposable as the product
T

FIG. 2. Scattering of a fermion against a linearly growing potential (inset). (a) Ordinary Klein process: a fraction of a Dirac
fermion turns into an antiparticle, entering the potential. (b) At an instant of time we apply the time reversal operator T
causing the particle to retrace its own trajectory. (c) Similar to (b) but now we apply charge conjugation, converting the
particle in its antiparticle. (d) Scattering of a Majorana fermion, which propagates through the potential. Parameters are
m = 0.5, c = 1 and V (x) = x, in dimensionless units.

Methods section. Moreover, the encoded Majorana dy-
namics requires a systematic decoding via a suitable re-
verse mapping of observables, as we show below. In short,
the real bispinor ⇥ ⇤ R4 can be encoded in the internal
state of two ions, while the position and momentum of
the Majorana particle are mapped onto the quadratures
of a collective motional mode, e. g. the center-of-mass
mode, of the ions7,9. The Hamiltonian of Eq. (7) can be
implemented term-by-term, in principle, in the trapped-
ion system by a number of lasers coupling the motional
and internal states of the ions. However, our proposal
is valid for a general quantum simulator and we do not
discard its implementation in other quantum platforms.

A relevant feature of the Majorana equation in 3+1
dimensions is the conservation of helicity. A reminiscent
of the latter in 1 + 1 dimensions is the observable called
hereafter as pseudo-helicity � = ⌅xpx. This quantity
is conserved in the 1+1 Majorana dynamics of Eq. (5)
but not in the 1+1 Dirac equation. We will use this
observable to illustrate measurements on the Majorana
wavefunction. The mapping for operators can be simpli-
fied if we are only interested in expectation values. Re-
constructing the complex spinor ⇧ = M⇥ with matrix
M =

�
11 i11

⇥
associated with Eqs. (6) and (7), we can

write the following equivalence

⇧O⌃� = ⇧⇧|O|⇧⌃ = ⇧⇥|M†OM |⇥⌃ =: ⇧Õ⌃�. (11)

According to this, in order to measure the pseudo-helicity
�, we have to measure

�̃ = M†⌅xpx M = (11⇥ ⌅x � ⌅y ⇥ ⌅x)⇥ px (12)

in the enlarged simulation space. In an ion trap imple-
mentation, the first term of this observable, (11⇥⌅x)⇥px,
is measurable with recently developed techniques9. The
second term is a three-operator correlation, (⌅y⇥⌅x)⇥px,
and will require a specific design with measurements

involving short-interaction times25, as explained in the
Methods section.
We want to emphasize that the previous mappings and

the implementation of discrete symmetries are not only
valid for Majorana equations, but also for Dirac spinors.
Equally interesting is the possibility of combining both
Dirac and Majorana mass terms in the same equation15,

i⇥ /⇧ = mMc⇧c +mDc⇧, (13)

which still requires only two ions for a 1+1 quantum sim-
ulation. It also becomes feasible to have CP violating
phases in the Dirac mass term, mD exp(i⇤⇥5). Further-
more, we could study the dynamics of coupled Majorana
neutrinos with a term M̄⇧c, where M̄ is now a matrix and
⇧ = ⇧(x1, x2) is the combination of two such particles,
simulated with three ions and two vibrational modes.
So far, we have presented a complete toolbox of un-

physical operations, ⇧�,⇧c, and T ⇧, that are available
in the proposed quantum simulator. We can combine all
these tools to study dynamical properties of the trans-
formed wavefunctions. To exemplify the kind of experi-
ments that become available, we have studied the scat-
tering of wavepackets against a linearly growing poten-
tial, V (x) = �x. It is known that repulsive potentials are
partially penetrated by Dirac particles16, an e⇤ect called
the Klein paradox10,11,26. This is shown in Fig. 2a, where
a Dirac particle splits into a fraction of a particle, that
bounces back, and a large antiparticle component that
penetrates the barrier. This numerical experiment has
been combined with the discrete symmetries and the Ma-
jorana equation. In Fig. 2b we show a Dirac wavepacket
that su⇤ers the time reversal operation some time after
entering the barrier: all momenta are reversed and the
wavepacket is refocused, tracing back exactly its original
trajectory. In Fig. 2c we repeat the same procedure but
using charge conjugation. This operation changes the
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becomes a local unitary VK acting solely on the ancillary space, K =  ⇤ ! VK =

(�z⌦I) , and thus physically implementable for a wavefunction of arbitrary dimensions.

Furthermore, unitaries and observables can also be mapped onto the real space, O !
⇥ = I ⌦ Or � i�y ⌦ Oi, where Or = 1

2

(O + KOK) and Oi = � i
2

(O � KOK), preserving

unitarity and Hermiticity. The proposed simulator also accommodates the antiunitary

operations C = UCK and T = UT K. To this end, we have to choose a particular

representation that fixes the unitaries UC and UT , as will be shown below.

We possess now the basic tools to simulate the Majorana equation (7.1). The expres-

sion for the charge conjugate spinor is given by  c = W�0K , with W a unitary matrix

satisfying W�1�µW = � (�µ)T . We illustrate now the proposed quantum simulation

with the case of 1+1 dimensions. Here, a suitable representation of charge conjugation

is  c = i�y�z ⇤, that is W = i�y, and the Majorana equation reads

i~@t = c�xpx � imc2�y 
⇤, (7.3)

where px = �i~@x is the momentum operator. Note that Eq. (7.3) is not Hamiltonian,

(i~@t 6= H ). This is due to the presence of a complex conjugate operation in the

right-hand side of Eq. (7.3), which is not a linear Hermitian operator. In particular, our
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where  r,i
1,2 are the real and imaginary parts of  

1

and  
2

respectively. Surprisingly,

the non-Hermitian Majorana equation for a complex spinor becomes a 3+1-dimensional

Dirac equation for a four-component real bispinor,

i~@t =
⇥
c(I ⌦ �x)px � mc2�x ⌦ �y

⇤
 . (7.5)

with dimensional reduction, py, pz = 0. Here, the dynamics preserves the reality

of the bispinor  and cannot be reduced to a single 1+1 Dirac particle. In general,

the complex-to-real map in arbitrary dimensions transforms a Majorana equation into
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FIG. 2. Scattering of a fermion against a linearly growing potential (inset). (a) Ordinary Klein process: a fraction of a Dirac
fermion turns into an antiparticle, entering the potential. (b) At an instant of time we apply the time reversal operator T
causing the particle to retrace its own trajectory. (c) Similar to (b) but now we apply charge conjugation, converting the
particle in its antiparticle. (d) Scattering of a Majorana fermion, which propagates through the potential. Parameters are
m = 0.5, c = 1 and V (x) = x, in dimensionless units.

Methods section. Moreover, the encoded Majorana dy-
namics requires a systematic decoding via a suitable re-
verse mapping of observables, as we show below. In short,
the real bispinor ⇥ ⇤ R4 can be encoded in the internal
state of two ions, while the position and momentum of
the Majorana particle are mapped onto the quadratures
of a collective motional mode, e. g. the center-of-mass
mode, of the ions7,9. The Hamiltonian of Eq. (7) can be
implemented term-by-term, in principle, in the trapped-
ion system by a number of lasers coupling the motional
and internal states of the ions. However, our proposal
is valid for a general quantum simulator and we do not
discard its implementation in other quantum platforms.

A relevant feature of the Majorana equation in 3+1
dimensions is the conservation of helicity. A reminiscent
of the latter in 1 + 1 dimensions is the observable called
hereafter as pseudo-helicity � = ⌅xpx. This quantity
is conserved in the 1+1 Majorana dynamics of Eq. (5)
but not in the 1+1 Dirac equation. We will use this
observable to illustrate measurements on the Majorana
wavefunction. The mapping for operators can be simpli-
fied if we are only interested in expectation values. Re-
constructing the complex spinor ⇧ = M⇥ with matrix
M =

�
11 i11

⇥
associated with Eqs. (6) and (7), we can

write the following equivalence

⇧O⌃� = ⇧⇧|O|⇧⌃ = ⇧⇥|M†OM |⇥⌃ =: ⇧Õ⌃�. (11)

According to this, in order to measure the pseudo-helicity
�, we have to measure

�̃ = M†⌅xpx M = (11⇥ ⌅x � ⌅y ⇥ ⌅x)⇥ px (12)

in the enlarged simulation space. In an ion trap imple-
mentation, the first term of this observable, (11⇥⌅x)⇥px,
is measurable with recently developed techniques9. The
second term is a three-operator correlation, (⌅y⇥⌅x)⇥px,
and will require a specific design with measurements

involving short-interaction times25, as explained in the
Methods section.
We want to emphasize that the previous mappings and

the implementation of discrete symmetries are not only
valid for Majorana equations, but also for Dirac spinors.
Equally interesting is the possibility of combining both
Dirac and Majorana mass terms in the same equation15,

i⇥ /⇧ = mMc⇧c +mDc⇧, (13)

which still requires only two ions for a 1+1 quantum sim-
ulation. It also becomes feasible to have CP violating
phases in the Dirac mass term, mD exp(i⇤⇥5). Further-
more, we could study the dynamics of coupled Majorana
neutrinos with a term M̄⇧c, where M̄ is now a matrix and
⇧ = ⇧(x1, x2) is the combination of two such particles,
simulated with three ions and two vibrational modes.
So far, we have presented a complete toolbox of un-

physical operations, ⇧�,⇧c, and T ⇧, that are available
in the proposed quantum simulator. We can combine all
these tools to study dynamical properties of the trans-
formed wavefunctions. To exemplify the kind of experi-
ments that become available, we have studied the scat-
tering of wavepackets against a linearly growing poten-
tial, V (x) = �x. It is known that repulsive potentials are
partially penetrated by Dirac particles16, an e⇤ect called
the Klein paradox10,11,26. This is shown in Fig. 2a, where
a Dirac particle splits into a fraction of a particle, that
bounces back, and a large antiparticle component that
penetrates the barrier. This numerical experiment has
been combined with the discrete symmetries and the Ma-
jorana equation. In Fig. 2b we show a Dirac wavepacket
that su⇤ers the time reversal operation some time after
entering the barrier: all momenta are reversed and the
wavepacket is refocused, tracing back exactly its original
trajectory. In Fig. 2c we repeat the same procedure but
using charge conjugation. This operation changes the
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Methods section. Moreover, the encoded Majorana dy-
namics requires a systematic decoding via a suitable re-
verse mapping of observables, as we show below. In short,
the real bispinor ⇥ ⇤ R4 can be encoded in the internal
state of two ions, while the position and momentum of
the Majorana particle are mapped onto the quadratures
of a collective motional mode, e. g. the center-of-mass
mode, of the ions7,9. The Hamiltonian of Eq. (7) can be
implemented term-by-term, in principle, in the trapped-
ion system by a number of lasers coupling the motional
and internal states of the ions. However, our proposal
is valid for a general quantum simulator and we do not
discard its implementation in other quantum platforms.

A relevant feature of the Majorana equation in 3+1
dimensions is the conservation of helicity. A reminiscent
of the latter in 1 + 1 dimensions is the observable called
hereafter as pseudo-helicity � = ⌅xpx. This quantity
is conserved in the 1+1 Majorana dynamics of Eq. (5)
but not in the 1+1 Dirac equation. We will use this
observable to illustrate measurements on the Majorana
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fied if we are only interested in expectation values. Re-
constructing the complex spinor ⇧ = M⇥ with matrix
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mentation, the first term of this observable, (11⇥⌅x)⇥px,
is measurable with recently developed techniques9. The
second term is a three-operator correlation, (⌅y⇥⌅x)⇥px,
and will require a specific design with measurements
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valid for Majorana equations, but also for Dirac spinors.
Equally interesting is the possibility of combining both
Dirac and Majorana mass terms in the same equation15,

i⇥ /⇧ = mMc⇧c +mDc⇧, (13)

which still requires only two ions for a 1+1 quantum sim-
ulation. It also becomes feasible to have CP violating
phases in the Dirac mass term, mD exp(i⇤⇥5). Further-
more, we could study the dynamics of coupled Majorana
neutrinos with a term M̄⇧c, where M̄ is now a matrix and
⇧ = ⇧(x1, x2) is the combination of two such particles,
simulated with three ions and two vibrational modes.
So far, we have presented a complete toolbox of un-

physical operations, ⇧�,⇧c, and T ⇧, that are available
in the proposed quantum simulator. We can combine all
these tools to study dynamical properties of the trans-
formed wavefunctions. To exemplify the kind of experi-
ments that become available, we have studied the scat-
tering of wavepackets against a linearly growing poten-
tial, V (x) = �x. It is known that repulsive potentials are
partially penetrated by Dirac particles16, an e⇤ect called
the Klein paradox10,11,26. This is shown in Fig. 2a, where
a Dirac particle splits into a fraction of a particle, that
bounces back, and a large antiparticle component that
penetrates the barrier. This numerical experiment has
been combined with the discrete symmetries and the Ma-
jorana equation. In Fig. 2b we show a Dirac wavepacket
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Methods section. Moreover, the encoded Majorana dy-
namics requires a systematic decoding via a suitable re-
verse mapping of observables, as we show below. In short,
the real bispinor ⇥ ⇤ R4 can be encoded in the internal
state of two ions, while the position and momentum of
the Majorana particle are mapped onto the quadratures
of a collective motional mode, e. g. the center-of-mass
mode, of the ions7,9. The Hamiltonian of Eq. (7) can be
implemented term-by-term, in principle, in the trapped-
ion system by a number of lasers coupling the motional
and internal states of the ions. However, our proposal
is valid for a general quantum simulator and we do not
discard its implementation in other quantum platforms.

A relevant feature of the Majorana equation in 3+1
dimensions is the conservation of helicity. A reminiscent
of the latter in 1 + 1 dimensions is the observable called
hereafter as pseudo-helicity � = ⌅xpx. This quantity
is conserved in the 1+1 Majorana dynamics of Eq. (5)
but not in the 1+1 Dirac equation. We will use this
observable to illustrate measurements on the Majorana
wavefunction. The mapping for operators can be simpli-
fied if we are only interested in expectation values. Re-
constructing the complex spinor ⇧ = M⇥ with matrix
M =
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11 i11
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associated with Eqs. (6) and (7), we can

write the following equivalence

⇧O⌃� = ⇧⇧|O|⇧⌃ = ⇧⇥|M†OM |⇥⌃ =: ⇧Õ⌃�. (11)

According to this, in order to measure the pseudo-helicity
�, we have to measure

�̃ = M†⌅xpx M = (11⇥ ⌅x � ⌅y ⇥ ⌅x)⇥ px (12)

in the enlarged simulation space. In an ion trap imple-
mentation, the first term of this observable, (11⇥⌅x)⇥px,
is measurable with recently developed techniques9. The
second term is a three-operator correlation, (⌅y⇥⌅x)⇥px,
and will require a specific design with measurements

involving short-interaction times25, as explained in the
Methods section.
We want to emphasize that the previous mappings and

the implementation of discrete symmetries are not only
valid for Majorana equations, but also for Dirac spinors.
Equally interesting is the possibility of combining both
Dirac and Majorana mass terms in the same equation15,

i⇥ /⇧ = mMc⇧c +mDc⇧, (13)

which still requires only two ions for a 1+1 quantum sim-
ulation. It also becomes feasible to have CP violating
phases in the Dirac mass term, mD exp(i⇤⇥5). Further-
more, we could study the dynamics of coupled Majorana
neutrinos with a term M̄⇧c, where M̄ is now a matrix and
⇧ = ⇧(x1, x2) is the combination of two such particles,
simulated with three ions and two vibrational modes.
So far, we have presented a complete toolbox of un-

physical operations, ⇧�,⇧c, and T ⇧, that are available
in the proposed quantum simulator. We can combine all
these tools to study dynamical properties of the trans-
formed wavefunctions. To exemplify the kind of experi-
ments that become available, we have studied the scat-
tering of wavepackets against a linearly growing poten-
tial, V (x) = �x. It is known that repulsive potentials are
partially penetrated by Dirac particles16, an e⇤ect called
the Klein paradox10,11,26. This is shown in Fig. 2a, where
a Dirac particle splits into a fraction of a particle, that
bounces back, and a large antiparticle component that
penetrates the barrier. This numerical experiment has
been combined with the discrete symmetries and the Ma-
jorana equation. In Fig. 2b we show a Dirac wavepacket
that su⇤ers the time reversal operation some time after
entering the barrier: all momenta are reversed and the
wavepacket is refocused, tracing back exactly its original
trajectory. In Fig. 2c we repeat the same procedure but
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FIG. 1. Diagram showing the di�erent steps involved in the quantum simulation of unphysical operations in 1+1 dimensions.

1
2 (O+KOK) and Oi = � i

2 (O�KOK), preserving unitar-
ity and Hermiticity. In addition to complex conjugation,
unitaries and Hermitian operators, the proposed simula-
tor also accomodates the antiunitary operations C = UCK
and T = UT K. To this end, we have to choose a particu-
lar representation that fixes the unitaries UC and UT , as
will be shown below.

At this point, we possess the basic tools to simulate
the Majorana equation (1) in the enlarged space. The
expression for the charge conjugate spinor is given by

⌅c = W�0K⌅, (4)

with W a unitary matrix satisfying W�1�µW =
� (�µ)T . We illustrate now with the case of 1 + 1 di-
mensions where a suitable representation of charge con-
jugation is ⌅c = i⇥y⇥z⌅⇥, that is W = i⇥y, and the
Majorana equation reads

i⇤⌥t⌅ = c⇥xpx⌅ � imc2⇥y⌅
⇥, (5)

where px = �i⇤⌥x is the momentum operator. Note that
this is not a Hamiltonian equation, i⇤⌥t⌅ = H⌅, as is
the case of Schrödinger and Dirac equations. This is due
to the presence of a complex conjugate operation in the
right-hand side of Eq. (5), which is not a linear Hermitian
operator. Surprisingly, through our mapping (2),
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⌅i
1

⌅i
2

⌃

⌦� ⌅ R4, (6)

the Majorana equation for a complex spinor becomes a
Dirac-type equation with dimensional reduction, py, pz =
0, and a four-component real bispinor

i⇤⌥t� =
�
c(11⇥ ⇥x)px �mc2⇥x ⇥ ⇥y

⇥
�. (7)

Note that, here, the dynamics preserves the reality of
the bispinor � and, in general, cannot be reduced to a
single 1+1 Dirac particle. The result of Eq. (7) is even
more general and the complex-to-real map in arbitrary

dimensions transforms always a Majorana equation into
a higher dimensional Dirac equation23,24. Since Eq. (7)
is a Hamiltonian wave equation, it can be simulated in a
quantum system while suitably encoding the Majorana
dynamics.
The mapping of wavefunctions into larger spinors may

allow us not only to implement Majorana equations in the
lab, but also to explore exotic symmetries and unphys-
ical operations, otherwise impossible in nature. From
Eqs. (5), (6), and (7), for the 1+1 dimensional case, we
can deduce that charge conjugation is implemented in
the enlarged space via the unitary operation UC

⌅c = C⌅ = UCK⌅ ⇤ UC� = �(⇥z ⇥ ⇥x)�. (8)

We can do something similar with time reversal, defined
as the change t ⇤ (�t). In this case, we expect14

i⇤⌥⇥⌅⇤(⇤) = H⌅⇤(⇤), (9)

where the time variable ⇤ = �t and the modified spinor
⌅⇤(⇤) = T ⌅(t). In order to preserve scalar products and
distances, the time reversal operator must be an anti-
unitary operator and thus decomposable as the product
T = UT K. In 1+1 dimensions, imposing that the Hamil-
tonian be invariant under time reversal, T �1HT , implies
that the unitary satisfies U�1

T (i⇥x⌥x)UT = �i⇥x⌥x, with
a possible choice being UT = ⇥z. In other words, in the
enlarged simulation space

T ⌅ = UT K⌅ ⇤ UT � = (⇥z ⇥ ⇥z)�. (10)

See Fig. 1 for a scheme of the simulated symmetries.
Equation (7), a Dirac equation in 3+1 dimensions with

dimensional reduction py, pz = 0, can also be interpreted
as a recipe for the quantum simulation of the Majorana
equation in the laboratory. In a recent experiment, the
dynamics of a free Dirac particle was simulated using a
single trapped ion9, a quantum platform that has proved
instrumental for quantum information implementations.
Unfortunately, Eq. (7) has a more complex structure and
a di⇥erent setup is required, which is outlined in the
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We present a method to construct entanglement measures for pure states of multipartite qubit systems. The
key element of our approach is an antilinear operator that we call “comb”. For qubits !or spin 1/2" the combs
are automatically invariant under SL!2,C". This implies that the filters obtained from the combs are entangle-
ment monotones by construction. We give alternative formulas for the concurrence and the three-tangle as
expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine
four-qubit entanglement.
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Entanglement is one of the most striking features of quan-
tum mechanics, but it is also one of its most counterintuitive
consequences of which we still have rather incomplete
knowledge #1$. Although the concentrated effort during the
past decade has produced impressive progress, there is no
general qualitative and quantitative theory of entanglement.

A pure quantum-mechanical state of distinguishable
particles is called disentangled with respect to a given parti-
tion P of the system if and only if it can be written as a
tensor product of the parts of this partition. In the opposite
case, the state must contain some finite amount of entangle-
ment. The question then is to characterize and quantify this
entanglement.

As to measuring the amount of entanglement in a given
pure multipartite state, the first major step was made by Ben-
nett et al. #2$ who discovered that the partial entropy of a
party in a bipartite quantum state is a measure of entangle-
ment. It coincides !asymptotically" with the entanglement of
formation !i.e., the number of Einstein-Podolsky-Rosen pairs
required to prepare a given state". Subsequently, the en-
tanglement of formation of a two-qubit state was related to
the concurrence #3,4$. Interestingly, by exploiting the knowl-
edge of the mixed-state concurrence, a measure for three-
partite pure states could be derived, the so-called “three
tangle” !3 #5$. In terms of the coefficients of the wave func-
tion %"000,"001,… ,"111& in the standard basis it reads

!3 = 'd1 − 2d2 + 4d3' ,

d1 = "000
2 "111

2 + "001
2 "110

2 + "010
2 "101

2 + "100
2 "011

2 ,

d2 = "000"111"011"100 + "000"111"101"010 + "000"111"110"001

+ "011"100"101"010 + "011"100"110"001

+ "101"010"110"001,

d3 = "000"110"101"011 + "111"001"010"100.

This was a remarkable step since, loosely speaking, it opened
the path to studying multipartite entanglement on solid
grounds. Further, it was noticed by Uhlmann that antilinear-

ity is an important property of operators that measure en-
tanglement #6$. A particularly interesting consequence of the
three-tangle formula was presented by Dür et al. who found
that there are two inequivalent classes of states with three-
party entanglement #7$.

Another important aspect of the research on entanglement
measures was the question regarding the requirements for a
function that represents an entanglement monotone #8$. It
turned out that the essential property to be satisfied is non-
increasing behavior on average under stochastic local opera-
tions and classical communication !SLOCC" #7,9$. Later,
Verstraete et al. demonstrated that, in general, an entangle-
ment monotone can be obtained from any homogeneous
positive function of pure-state density matrices that remain
invariant under determinant-one SLOCC operations #10$.

Despite the enormous effort, the only truly operational
entanglement measure for arbitrary mixed states at hand, up
to now, is the concurrence. For pure states we have a slightly
farther view up to systems of two qutrits #11,12$, and for
three qubits, due to the three-tangle. Various multipartite en-
tanglement measures for pure states have been proposed; but
most of these measures do not yield zero for all possible
product states !e.g., Refs. #13–16$".

This motivated the quest for an operational entanglement
measure based on the requirement that it be zero for product
states !not only for completely separable pure states". In par-
ticular, the goal has been to explore the idea that entangle-
ment monotones are related to antilinear operators as pointed
out for the concurrence by Uhlmann #6$. Here we show that
it is possible to construct a filter, i.e., an operator that has
zero expectation value for all product states. It will turn out
that these filters are entanglement monotones by construc-
tion. Interestingly, the two-qubit concurrence and the three
tangle have various equivalent filter representations !see be-
low". In order to illustrate the application of the method to a
nontrivial example, we will present filters for four-qubit
states that are able to distinguish inequivalent types of genu-
ine four-qubit entanglement. We use the term “genuine
N-qubit entanglement” in a more restricted sense than, e.g.,
in Ref. #7$: a state with only genuine N-partite entanglement
does not contain any genuine !N−k"-partite entanglement !or
“subtangle”" with 1#k#N−2. In this sense the only class of
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Majorana equation: theory 
J. Casanova et al., PRX ’11

Noncausal kinematics and Galilean transformations 
U. Alvarez-Rodriguez et al., PRL ’13

Computation of n-time correlation functions 
J. S. Pedernales et al., PRL ‘14

Computation of entanglement monotones 
R. Di Candia et al., PRL ’13

With tools that currently exist in quantum simulations, we
would need to stop the dynamics, implement a full quan-
tum tomography of the current quantum state
associated to a huge Hilbert space, apply the unphysical
operation in a classical computer, encode back the modi-
fied quantum state into the experimental setup, and then to
proceed with the quantum simulation. Clearly, this task
would be impossible with classical resources but could
be accomplished with a suitable implementation of our
proposed ideas.

In a recent experiment, the dynamics of a free Dirac
particle was simulated with a single trapped ion [13].
Here, Eq. (5) has a more complex structure requiring a
different setup. Moreover, the encoded Majorana dynamics
requires a systematic decoding via a suitable reverse map-
ping of observables. We can simulate Eq. (5) with two
trapped ions, with lasers coupling their internal states and
motional degrees of freedom. The kinetic part, cpxð1 " !xÞ,
is created with a laser tuned to the blue and red motional
sidebands of an electronic transition [12,14], which is fo-
cused on ion 2. The second term, !x " !y, is derived from
detuned red and blue sideband excitations stimulated in each
ion. The Hamiltonian describing this situation reads as

H ¼ @!0

2
!z

1 þ @!0

2
!z

2 þ @"ayaþ @"rb
yb

þ @!f½eiðqz1'!1tþ#1Þ þ eiðqz1'!0
1tþ#0

1Þ(!þ
1 þ H:c:g

þ @!f½eiðqz2'!2tþ#2Þ þ eiðqz2'!0
2tþ#0

2Þ(!þ
2 þ H:c:g

þ @ ~!f½eiðqz2'!tþ#Þ þ eiðqz2'!0tþ#0Þ(!þ
2 þ H:c:g:

Here z1;2 ¼ Z) z=2 are the positions, of the two ions,
respectively, measured from their center of mass Z and
relative coordinate z. The phases of the lasers #i, for
i ¼ 1; 2 (#;#0), are controlled to simulate the interaction
term (kinetic term). The frequencies of the center-of-mass
vibration and the stretch mode are given by " and
"r ¼

ffiffiffi
3

p
", respectively, and whereas ay, a, by, and b, are

the corresponding creation and annihilation operators.
Finally, ! and ~! are the laser Rabi frequencies in the
rotating-wave approximation. With the adequate choice of
parameters,

!1¼!0þ"r'$; !0
1¼!0'"rþ$; !2¼!0'"rþ$;

!0
2¼!0þ"r'$; !¼!0'"; !0¼!0þ"; #¼%;

#0¼0; #1¼%=2; #0
1¼%=2; #2¼0; #0

2¼0;

(8)

the Hamitonian in the interaction picture reads as

H ¼ @&r!ð!x " 1' 1 " !yÞðbyei$t þ be'i$tÞ
þ @& ~!ð1 " !xÞiðay ' aÞ; (9)

where & * &r3
1=4 *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi@=4m0"
p

+ 1 is the Lamb-Dicke
parameter and m0 is the ion mass. In the limit of large

detuning, we have $ , &r!
ffiffiffiffiffiffiffiffiffiffiffiffi
hbybi

p
, & ~!jhay ' aij, and

we recover Eq. (5) with the momentum operator px ¼
i@ðay ' aÞ=2" and the equivalences c ¼ 2&" ~! and

mc2 ¼ 2@&2
r!

2=$ with" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi@=4m0"

p
. Introducing the ra-

tio ' ¼ jmc2=hcpxij, with ' ¼ 2ð&r!=$Þ2
jhiðay'aÞijð& ~!=$Þ , we see that

it is possible to tune the numerator and denominator inde-
pendently to preserve the dispersive regime,while exploring
simultaneously the range from ' ’ 0 (ultrarelativistic limit)
to ' ! 1 (nonrelativistic limit).
An interesting feature of the Majorana equation in 3þ 1

dimensions is the conservation of helicity. Its reminiscent
in 1þ 1 dimensions is an observable called, hereafter,
pseudohelicity # ¼ !xpx. This quantity is conserved in
the 1þ 1-dimensional Majorana dynamics of Eq. (3) but
not in the 1þ 1-dimensional Dirac equation. We will use
this observable to illustrate measurements on the Majorana
wave function. The mapping for operators can be simpli-
fied if we are only interested in their expectation values.
Reconstructing the complex spinor with the nonsquare
matrix c ¼ M$ and M ¼ ð1 i1 Þ, associated with
Eqs. (4) and (5), we have hOic ¼ hc jOjc i ¼
h$jMyOMj$i ¼: h ~Oi$. Therefore, to obtain the pseudo-
helicity #, we have to measure

~# ¼ My!xpxM ¼ ð1 " !x ' !y " !xÞ " px (10)

FIG. 1. Diagram showing the different steps involved in the proposed quantum simulation of unphysical operations in 1þ 1
dimensions.
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!ðx; t¼ 0Þ ¼
c ðx; t¼ 0Þ

0

 !
¼

1

0

 !
$ c ðx; t¼ 0Þ: (15)

This is because at t ¼ 0, c e ¼ 1
2 ½c ðx; 0Þ þ c ðx; 0Þ' ¼

c ðx; 0Þ and c o ¼ 1
2 ½c ðx; 0Þ ( c ðx; 0Þ' ¼ 0.

The inclusion of the time parity operation allows us to
encode the expectation value of the propagator e(iHt in two
observables in the enlarged space. We point out that com-
puting this average value requires, in general, full tomog-
raphy with alternative approaches. To accomplish this task,
we first evolve the initial wave function !ðx; t ¼ 0Þ under
the Hamiltonian !x $He of Eq. (14), generating the state
!ðx;tÞ¼ 1

2ðc ðx;tÞþ c ðx;(tÞ;c ðx;tÞ(c ðx;(tÞÞT . Later,
we apply e(iI$He" to !ðx; tÞ, producing

~!¼ e(iI$He"!ðx;tÞj"¼t ¼
1

2

c ðx;2tÞþ c ðx;0Þ
c ðx;2tÞ( c ðx;0Þ

 !
: (16)

Thus, according to the following equivalence:

he(i2tHi ¼ hc ðx; 0Þjc ðx; 2tÞi ¼ h ~!j!z

1

1

 !
1 ; 1
! "j ~!i

¼ h ~!jð!z þ i!yÞj ~!i; (17)

the measurement of !z and !y in the enlarged space will
provide us with the expectation value of the propagator.
In some cases, it is possible to relate the expectation value
of Eq. (17) with self-correlation functions. For example,
for spin systems one can write

he(i2tHi¼ hc ðsi;t¼0Þje(i2tHjc ðsi;t¼0Þi
¼ hc 0ðsi;t¼0Þj!je

(i2tH!jjc 0ðsi;t¼0Þi; (18)

where si refers to the spin degrees of freedom, jc 0ðsi; t ¼
0Þi ¼ !jjc ðsi; t ¼ 0Þi, and !j corresponds to !x, !y, !z

for j ¼ 1, 2, 3, or, in general, to any Hermitian linear
combination of them. In cases in which fH;!jg ¼ 0, it is
possible to write the last line of Eq. (18) as

hc 0ðsi; t ¼ 0Þj!jð(t=2Þ!jðt=2Þjc 0ðsi; t ¼ 0Þi; (19)

with !jð)t=2Þ ¼ expð* it
2 HÞ!j expð) it

2 HÞ. This corre-
sponds to a self-correlation function that would require,
in general, full tomography to be computed.
Our protocol can be generalized in order to include the

possibility of performing several transformations in a
quantum simulation on one or many particles. For instance,
given a wave function c ðx; yÞ, where x and y are indepen-
dent coordinates that may represent the position of two
particles in one dimension or the coordinates of one parti-
cle in two dimensions, we have c ðx; yÞ ¼ c e;e þ c e;o þ
c o;e þ c o;o, where

c i;j ¼
1

4
f½c ðx; yÞ þ ð(1Þic ð(x; yÞ' þ ð(1Þj½c ðx;(yÞ

þ ð(1Þic ð(x;(yÞ'g; (20)

and i; j ¼ fe + 0; o + 1g. We then consider the spinor
! ¼ ðc e;e; c e;o; c o;e; c o;oÞT that is related to c ðx; yÞ
through c ðx; yÞ ¼ ð1; 1; 1; 1Þ!. The decomposition of
Eq. (20) allows us to generate easily operations of spatial
parity in the x and y coordinates, #xc ðx; yÞ ¼ c ð(x; yÞ,
#yc ðx; yÞ ¼ c ðx;(yÞ, and #x#yc ðx; yÞ ¼ c ð(x;(yÞ.
This is achieved applying just local gates to the state ! in
the enlarged space, #xc ðx; yÞ ¼ ð1; 1; 1; 1Þð!z $ IÞ!,
#yc ðx; yÞ ¼ ð1; 1; 1; 1ÞðI $ !zÞ!, and #x#yc ðx; yÞ ¼
ð1; 1; 1; 1Þð!z $ !zÞ!. In general, each inclusion of a
new symmetry transformation in the quantum simulation
amounts to doubling the Hilbert space. In different quan-
tum optical implementations, like trapped-ion setups [33]
and superconducting qubits [34], this implies adding an-
other qubit encoding the proposed symmetry; see Fig. 1.
The interactions that appear due to the inclusion of these
symmetries, involving tensor products of Pauli matrices,
are efficiently implementable in a digital quantum simula-
tor with recently developed techniques [24,35].
In summary, we have explored the limits of quantum

simulations via a formalism performing linear coordinate
transformations during a simulated quantum dynamics.
Among other features, we may compute spin temporal
correlation functions without performing full tomography.
Moreover, our method allows us to measure directly cor-
relations between different reference frames. Finally, we
may also study noncausal kinematics in a system respect-
ing the laws of quantum physics and relativity. We point
out that these fundamental concepts and formalism may be
implemented in a wide variety of platforms, such as, e.g.,
trapped ions, superconducting qubits, cold atoms, and
integrated quantum photonics.

FIG. 1 (color online). Scheme of gates acting on the active
(colored circles) and control (white circles) qubits, implement-
able in different quantum platforms. In this example, we depict a
quantum simulation process in which two or more (spacetime
nonlocal) kinematic transformations #x;#y; . . . , have been
performed at an intermediate time of the simulated dynamics.
The first and fourth boxes (starting from the right) are used to
generate the dynamics given by an evolution operator Ut. The
small boxes represent local gates Uc1;c2 acting on the control
qubits.
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Here, ! ¼ P
ipijc iihc ij is the density matrix describing

the system, and the minimum in Eq. (1) is taken over all
possible pure-state decompositions [2].

A systematic procedure to define entanglement monot-
ones for pure states involves the complex-conjugation
operator K [23,24]. For instance, the concurrence for
two-qubit pure states [16] can be written as

Cðjc iÞ $ jhc j"y % "yKjc ij: (2)

Note that "y % "yK, where Kjc i $ jc &i, is an antilinear
operator that cannot be associated with a physical observ-
able. In general, we can construct entanglement monotones
for N-qubit systems by combining three operational
building blocks: K, "y, and g#$"#"$, with g#$ ¼
diagf'1; 1; 0; 1g, "0 ¼ I2, "1 ¼ "x, "2 ¼ "y, and "3 ¼
"z, where we assume the repeated index summation
convention [24]. For a two-qubit system, N ¼ 2, we
can define jhc j"y % "yKjc ij and jg#$g%&hc j"# %
"%Kjc ihc j"$ % "&Kjc ij as entanglement monotones.
The first expression corresponds to the concurrence, and
the second one is a second-order monotone defined in
Ref. [24]. For N ¼ 3 we have jg#$hc j"# % "y %
"yKjc ihc j"$ % "y % "yKjc ij, corresponding to the
3-tangle [22], and so on.

To evaluate the above class of entanglement monotones
in a one-to-one quantum simulator, we would need to
perform full tomography on the system. This is because
terms like hc jOKjc i $ hc jOjc &i, with O Hermitian, do
not correspond to the expectation value of a physical
observable, and they have to be computed classically
once each complex component of jc i is known. We will
explain now how to compute efficiently quantities such as
hc jOKjc i in our proposed embedding quantum simulator,
via the measurement of a reduced number of observables.

Consider a pure quantum state jc i of an N-qubit system
2 C2N , whose evolution is governed by the HamiltonianH
via the Schrödinger equation (@ ¼ 1)

ði@t 'HÞjc ðtÞi ¼ 0: (3)

The quantum dynamics associated with the HamiltonianH
can be implemented in a one-to-one quantum simulator
[25,26], or, alternatively, it can be encoded in an embed-
ding quantum simulator, where K may become a physical
quantum operation [27]. The latter can be achieved accord-
ing to the following rules.
Embedding quantum simulator.—We define a mapping

M: C2N ! R2Nþ1 in the following way:

jc i ¼

c 1
re þ ic 1

im

c 2
re þ ic 2

im

c 3
re þ ic 3

im

..

.

0
BBBBBBB@

1
CCCCCCCA
!M j ~c i ¼

c 1
re

c 2
re

c 3
re

..

.

c 1
im

c 2
im

c 3
im

..

.

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: (4)

Hereafter, we will call C2N the simulated space and R2Nþ1

the simulating space or the enlarged space. We note that
the resulting vector j ~c i has only real components (see
Refs. [18–20] for other developments involving real
Hilbert spaces) and that the reverse mapping is jc i ¼
Mj ~c i, with M ¼ ð1; iÞ % I2N . It is noteworthy to mention
that, for an unknown initial state, the mapping M is not
physically implementable. However, according to Eq. (4),
the knowledge of the initial state in the simulated space
determines completely the possibility of initializing the
state in the enlarged space. Furthermore, it can be easily
checked that the inverse mapping M can always be com-
pleted to form a unitary operation.
Now, we can write

Kjc i$ jc &i¼Mj ~c &i¼Mð"z% I2N Þj ~c i$M ~Kj ~c i; (5)

which, despite its simple aspect, has important consequen-
ces. Basically, Eq. (5) tells us that, while jc i and jc &i
are connected by the unphysical operation K in the simu-
lated space, the relation between their images in the
enlarged space, j ~c i and j ~c &i, is a physical quantum gate
~K $ ð"z % I2N Þ. In this way, we obtain that

hc jOKjc i ¼ h ~c jMyOMð"z % I2N Þj ~c i; (6)

where we can prove that

MyOMð"z % I2N Þ ¼ ð"z ' i"xÞ %O: (7)

Note that MyOMð"z % I2N Þ is a linear combination of
Hermitian operators "z %O and "x %O. Hence, its expec-
tation value can be efficiently computed via the measure-
ment of these two observables in the enlarged space.

FIG. 1 (color online). One-to-one quantum simulator versus
embedding quantum simulator. The conveyor belts represent the
dynamical evolution of the quantum simulators. The real (red)
and imaginary (blue) parts of the simulated wave vector compo-
nents are split in the embedding quantum simulator, allowing the
efficient computation of entanglement monotones.
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Furthermore, we point out that the computation of n-time
correlations, as hΨjΨ0i ¼ hΨjU†ðtÞAUðtÞBjΨi, is not a
trivial task even if one has access to full state tomography,
due to the ambiguity of the global phase of state
jΨ0i ¼ U†ðtÞAUðtÞBjΨi. Therefore, we are confronted
with a cumbersome problem: the design of measurement
apparatus depending on the system evolution for determin-
ing n-time correlations of a system whose evolution may
not be accessible. To our knowledge, a general formalism to
attack this problem is still missing, while alternative
algorithmic strategies [33] may be considered.
In this Letter, we propose an efficient quantum algorithm

for computing general n-time correlation functions of an
arbitrary quantum system, requiring only an initially added
probe and control qubit. Moreover, our method is appli-
cable to a general class of interacting spinorial, bosonic,
and fermionic systems. Finally, we provide examples of our
protocol in the frame of the linear response theory, where
n-time correlation functions are needed.
The protocol works under the following two assump-

tions. First, we are provided with a controllable quantum
system undergoing a given quantum evolution described by
the Schrödinger equation

iℏ∂tjϕi ¼ Hjϕi: ð1Þ

Second, we require the ability to perform entangling
operations, for example Mølmer-Sørensen [34] or equiv-
alent controlled gates [35], between some part of the system
and the ancillary qubit. More specifically, and as it is
discussed in the Supplemental Material [36], we require a
number of entangling gates that grows linearly with the
order n of the n-time correlation function and that
remains fixed with increasing system size. This protocol
will provide us with the efficient measurement of
generalized n-time correlation functions of the form
hϕjOn−1ðtn−1ÞOn−2ðtn−2Þ;…; O1ðt1ÞO0ðt0Þjϕi, where
On−1ðtn−1Þ;…; O0ðt0Þ are certain operators evaluated at
different times, e.g., OkðtkÞ ¼ U†ðtk; t0ÞOkUðtk; t0Þ,
Uðtk; t0Þ being the unitary operator evolving the system
from t0 to tk. For the case of dynamics governed by
time-independent Hamiltonians, Uðtk; t0Þ ¼ Uðtk − t0Þ ¼
e−ði=ℏÞHðtk−t0Þ. However, our method applies also to the case
where H ¼ HðtÞ, and can be sketched as follows. First, the
ancillary qubit is prepared in state 1=

ffiffiffi
2

p
ðjeiþ jgiÞwith jgi

its ground state, as in step 1 of Fig. 1, so that the whole
ancilla-system quantum state is 1=

ffiffiffi
2

p
ðjeiþ jgiÞ ⊗ jϕi,

where jϕi is the state of the system. Second,

we apply the controlled quantum gate U0
c ¼

exp ½−ði=ℏÞjgihgj ⊗ H0τ0&, where, as we will see below,
H0 is a Hamiltonian related to the operatorO0, and τ0 is the
gate time. As we point out in the Supplemental Material
[36], this entangling gate can be implemented efficiently
with Mølmer-Sørensen gates for operators O0 that consist
of a tensor product of Pauli matrices [34]. This operation
entangles the ancilla with the system generating the state
1=

ffiffiffi
2

p
ðjei ⊗ jϕiþ jgi ⊗ ~U0

cjϕiÞ, with ~U0
c ¼ e−ði=ℏÞH0τ0 ,

step 2 in Fig. 1. Next, we switch on the dynamics of the
system governed by Eq. (1). For the sake of simplicity let us
assume t0 ¼ 0. The effect on the ancilla-system wave
function is to produce the state 1=

ffiffiffi
2

p
ðjei ⊗ Uðt1; 0Þjϕiþ

jgi ⊗ Uðt1; 0Þ ~U0
cjϕiÞ, step 3 in Fig. 1. Note that, remark-

ably, this last step does not require an interaction between
the system and the ancillary-qubit degrees of freedom, nor
any knowledge of the Hamiltonian H. These techniques, as
will be evident below, will find a natural playground in the
context of quantum simulations, preserving its analogue or
digital character. If we iterate n times step 2 and step 3
with a suitable choice of gates and evolution times,
we obtain the state Φ ¼ 1=

ffiffiffi
2

p
ðjei⊗ Uðtn−1; 0Þjϕi þ jgi⊗

~Un−1
c Uðtn−1; tn−2Þ;…;Uðt2; t1Þ ~U1

cUðt1; 0Þ ~U0
cjϕiÞ. Now,

we target the quantity TrðjeihgjjΦihΦjÞ by measuring the
hσxi and hσyi corresponding to the ancillary degrees of
freedom. Simple algebra leads us to

TrðjeihgjjΦihΦjÞ ¼ 1

2
ðhΦjσxjΦiþ ihΦjσyjΦiÞ ¼

1

2
hϕjU†ðtn−1; 0Þ ~Un−1

c Uðtn−1; tn−2Þ…Uðt2; t1Þ ~U1
cUðt1; 0Þ ~U0

cjϕi: ð2Þ

It is easy to see that, by using the composition property
Uðtk; tk−1Þ ¼ Uðtk; 0ÞU†ðtk−1; 0Þ, Eq. (2) corresponds to a
general construction relating n-time correlations of system

operators ~Uk
c with two one-time ancilla measurements. In

order to explore its depth, we shall examine several
classes of systems and suggest concrete realizations of

FIG. 1 (color online). Quantum algorithm for computing n-time
correlation functions. The ancilla state 1=

ffiffiffi
2

p
ðjeiþ jgiÞ generates

the jei and jgi paths, step 1, for the ancilla-system coupling. After
that, controlled gates Um

c and unitary evolutions Uðtm; tm−1Þ
applied to our system, steps 2 and 3, produce the final state Φ.
Finally, the measurement of the ancillary spin operators σx and σy
leads us to n-time correlation functions.
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Figure 1: Schematic of the embedding quantum simulator. The upper and lower parts repre-
sent the original and enlarged spaces, respectively. Unphysical processes, which are forbidden
by the laws of quantum mechanics, are mapped to unitary operations in the enlarged space. The
embedding quantum simulator is built in a single 171Yb+ ion trapped in a linear Paul trap, where
the enlarged space is encoded in the ground-state manifold of the ion. The unitary operations
are implemented by applying microwaves with six frequencies from a microwave horn.
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FIG. 2. Illustration of the waveguide sample, where
two Dirac equations with opposite masses are simulated in
two parallel planar lattices. The inset shows the phase-
segmentation in the upper lattice, which is used to impose
a phase gradient of ⇡/2 between adjacent guides. The reverse
segmentation profile is used in the lower plane. The calcu-
lated light intensity distribution with the same parameters as
in Fig. 1 has been superimposed onto the illustration.

opposing signs of the mass governing the evolution of
the two spinors  ± are implemented by an exchange of
the sublattices A and B[29]. Note that instead of time
t, the evolution coordinate is now the propagation dis-
tance Z. The beam exhibits a pronounced trembling mo-
tion around the main trajectory, which is the photonic
analogue of the famous Zitterbewegung of a relativistic
electron[30]. In our experimental setting, we generate
the desired phase distribution in the waveguide lattice
by an appropriate segmentation of the waveguides (see
Methods). Figure 1a shows an experimentally observed
photonic Zitterbewegung in a photonic lattice using such
phase tailoring. A numerical simulation of the Zitterbe-
wegung, based on Eq. (5), is shown in Fig. 1b. The close
correspondence proves the ability to simulate the Dirac
equation in a waveguide lattice.

In our setting, we make use of exactly this fact and
let two light beams propagate along two parallel pla-
nar waveguide lattices with masses of opposite sign, such
that the two Dirac equations (4) are simulated in paral-
lel, leading to Zitterbewegung in opposite directions (see
Fig. 2). After the desired propagation distance (corre-
sponding to a specific evolution time), the amplitude dis-
tributions are coherently combined using directional cou-
plers between pairs of associated waveguides in the up-
per and lower lattices, in order to retrieve the Majoranon
wave function according to Eq. (3) (see Methods). By
construction, the first spinor component  1 is distributed
over the odd lattice sites, whereas the second compo-
nent  2 is found on the even sites. Figure 3 shows our
experimental results in a system of 26 waveguides, i.e.,
n = 1, . . . , 13 discretisation points for the spinors, with

a Majoranon mass � = 0.65 and  = 0.064mm�1. The
initial Majoranon spinor corresponds to a wavepacket
with zero average momentum and  2 = 0 (see Meth-
ods). In Figs. 3a and b the computed parallel evolu-
tion of both components of the Majoranon spinor is pre-
sented. We observe that although initially all intensity
is concentrated in  1, it immediately starts to oscillate
between the two spinor components and, at the same
time, to spread along the transverse space coordinate.
Using our photonic structure, we observe the popula-
tion of both spinor components at two di↵erent propaga-
tion distances. For a small e↵ective evolution distance of
Z = Le,e↵ = 0.55�1 = 8.6mm (see Methods), the light
mostly remains in odd waveguide sites, which heralds the
prevalent occupation of  1 (Fig. 3c). For a larger distance
of Z = 4.4�1, one expects another minimum of spinor 2
accompanied by extensive spreading of the wave packet
(cf. Figs. 3a,b). Indeed, most of the light is again trapped
in the odd channels and the entire wave packet is spread
over a much larger spatial region (Fig. 3d). The individ-
ual spinor intensities, which are equivalent to the light
intensities on the odd/even sites, are shown in Figs. 3e,f,
together with the theoretical data. At both lengths, the
population of  1 predominates  2.

In Fig. 3g we show the expected unphysical oscillations
in the pseudo-energy of the Majoranon as discussed ear-
lier. The measured values of h�

z

i at the two evolution
lengths lie in very close agreement to the expected val-
ues, while displaying significant di↵erence to the calcu-
lated pseudo-energy of the same initial spinor subjected
to the Dirac equation (6). Note that the oscillations in
pseudo-energy for the Dirac particle and the Majoranon
occur for entirely di↵erent reasons: the oscillation for the
Dirac particle occurs due to non-zero momentum com-
ponents in the initial wave packet, while the oscillation
for the Majoranon is mainly due to the unphysical mass
term. To elaborate on this di↵erence further, we also
study the evolution of a Majoranon for a larger mass.
For this purpose, we have implemented a second sample
with a larger detuning � between the sublattices A and
B, resulting in a simulated particle mass of � = 1.2. In
this system,  = 0.072mm�1 and 30 lattice sites were
used. The results are summarised in Fig. 4. Due to the
reduced momentum contribution in the evolution, the
amplitude of the oscillation in pseudo-energy has gotten
smaller for the Dirac particle, resulting in larger discrep-
ancies with the Majoranon, whose oscillation amplitude
is not a↵ected by the increase in mass (see Fig. 4g). The
oscillation frequency, however, has increased, such that
already at small distances Z = 0.9�1 mostly  2 is pop-
ulated (see Figs. 4a-c,e). After a distance of Z = 3.5�1,
a further oscillation period has occurred, leading again
to a strong population of  2. However, the transverse
spreading of the wave packet is much less pronounced
than for the smaller mass of � = 0.65, as clearly visi-
ble from Figs. 4d,f. This is consistent with the fact that
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FIG. 1. (a) Qubits 1 and 2 evolve via an entangling Hamil-
tonian H during a time interval t, at which point quantum
state tomography (QST) is performed via the measurement of
15 observables to extract the amount of evolving concurrence.
(b) An e�cient alternative corresponds to adding one extra
ancilla, qubit 0, and having the enlarged system—the embed-
ding quantum simulator (EQS)—evolve via H(E). Only two
observables are now required to reproduce measurements of
concurrence of the system under simulation.

which relates the simulated concurrence to the ex-
pectation values of two nonlocal operators in the
embedding quantum simulator. Regarding the dy-
namics, it can be shown that the Hamiltonian
H(E) that governs the evolution in the simulator is
H(E)=��y⌦(ReH)+iI

2

⌦(ImH) [12]. Accordingly, in
our case, it will be given by H(E)=g�y⌦�z⌦�z.

Our initial state under simulation is
| (0)i=(|0i+|1i)⌦(|0i+|1i)/2, which requires, see
Eq. (2), the initialization of the simulator in
| (0)i=|0i⌦ (|0i+ |1i)⌦ (|0i+ |1i) /2. Under these con-
ditions, the relevant simulator observables, see Eq. (3),
read h�x⌦�y⌦�yi=sin (2gt) and h�z⌦�y⌦�yi=0, from
which the concurrence of Eq. (1) will be extracted.
Therefore, our recipe, depicted in Fig. 1, allows the
encoding and e�cient measurement of two-qubit
concurrence dynamics.

To construct the described three-qubit simulator dy-
namics, it can be shown (see Supplemental Material)
that a quantum circuit consisting of 4 controlled-sign
gates and one local rotation Ry(�)=exp (�i�y�), as de-
picted in Fig. 2(a), implements the evolution operator
U(t)=exp [�ig (�y⌦�z⌦�z) t], reproducing the desired
dynamics, with � = gt. This quantum circuit can be fur-
ther reduced if we consider only inputs with the ancillary
qubit in state |0i, in which case, only two controlled-sign
gates reproduce the same evolution, see Fig. 2 (b). This
reduced subspace of initial states corresponds to simu-
lated input states of only real components.
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FIG. 2. Quantum circuit for the embedding quan-
tum simulator. (a) 4 controlled-sign gates and one
local rotation R

y

(�) implement the evolution operator

U(t)=exp
⇣
�ig�

(0)
y

⌦�
(1)
z

⌦�
(2)
z

t
⌘
, with � = gt. (b) A reduced

circuit employing only two controlled-sign gates reproduces
the desired three-qubit dynamics for inputs with the ancil-
lary qubit in |0i.

Experimental implementation. We encode a three-
qubit state in the polarization of 3 single-photons. The
logical basis is encoded according to |hi⌘|0i, |vi⌘|1i,
where |hi and |vi denote horizontal and vertical polariza-
tion, respectively. The simulator is initialized in the state
| (0)i=|hi(0)⌦

�
|hi(1) + |vi(1)

�
⌦
�
|hi(2) + |vi(2)

�
/2 of

qubits 0, 1 and 2, and evolves via the optical circuit in
Fig. 2 (b). Figure 3 is the physical implementation of
Fig. 2 (b), where the dimensionless parameter �=gt is
controlled by the angle �/2 of one half-wave plate. The
two concatenated controlled-sign gates are implemented
by probabilistic gates based on two-photon quantum
interference [15–17], see Supplemental Material.
In order to reconstruct the two three-qubit ob-

servables in Eq. (3), one needs to collect 8 pos-
sible tripartite correlations of the observable eigen-
states. For instance, the observable h�x⌦�y⌦�yi is
obtained from measuring the 8 projection combina-
tions of the {|di, |ai}⌦{|ri, |li}⌦{|ri, |li} states, where
|di=(|hi+|vi)/

p
2, |ri=(|hi+i|vi)/

p
2, and |ai and |li

are their orthogonal states, respectively. To implement
these polarization projections, we employed Glan-Taylor
prisms due to their high extinction ratio. However, only
their transmission mode is available, which required each
of the 8 di↵erent projection settings separately, extending
our data-measuring time. The latter can be avoided by
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FIG. 1: Embedding simulator for efficient entanglement measure. The entanglement in original dynamic systemH cannot be directly measured
as it contains complex terms like ⟨Ψ|A |Ψ∗⟩. Through embedding the initial state and Hamiltonian into an enlarged simulator assisted by an
ancillary qubit, the complex terms are allowed to efficiently measure on the enlarged state.
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FIG. 2: Experimental setup. Ultraviolet (UV) femtosecond laser
pulses (394 nm, 120 fs, 76 MHz) pass through two type-II BBO crys-
tals to produce two pairs of entangled photons. Two single photons,
one from each pairs, are mixed on a PDBS to generate W-type entan-
gled state. To simulate the three-tangle system, the PDBS is switched
to a PBS to generate GHZ-type entangled four photons. The multi-
photon sources are sent to next stage to perform local operations by
HWPs and a polarization dependent Mach-Zehnder interferometer.
Finally, the photons are measured in by four-fold coincidence count-
ing. BBO, beta-barium borate; PDBS, polarization dependent beam
splitter with a transmission of 0.72 for H photons and 0.28 for V
photons ; PBS, polarization beam splitter; HWP, half-wave plate;
QWP, quarter-wave plate. H and V denote horizontal and vertical
polarization.

measurements of observables ZA0 and XA0 on the enlarged
state to evaluate the entanglement, and for an odd-N particle
system it needs only six measurements of observables ZA1,
XA1, ZA2, XA2, ZA3, andXA3.
By embedding the initial wavefunction |ψ(0)⟩ and quantum

dynamics H into an enlarged simulator initialized in
∣

∣

∣
ψ̃(0)

〉

with an appropriate Hamiltonian H̃ , the complex-conjugation
expectation relation at various time still holds as

⟨AK⟩ (t) = ⟨ZA⟩ (t)− i ⟨XA⟩ (t), (4)

where

H = A+ iB, H̃ =

(

iB iA
−iA iB

)

(5)

with real matrix A† = A and B† = −B. This allow us to
track the multiparticle entanglement dynamics efficiently.
Now we proceed with experimental demonstration using

multi-photon quantum simulators [26]. To demonstrate the
general working principle for multiparticle systems of even
and odd number of qubits, we choose to implement the mea-
surement of dynamical concurrence of a two-qubit entangled
state and three-tangle of a three-qubit entangled state. The
first example, a concurrence system, starts from an initial state
|ψ(0)⟩ = |0⟩⊗ |0⟩ with a HamiltonianH = X⊗Y +X⊗Z .
The task is to evaluate the concurrence at arbitrary time t as-
sociated with the unknown quantum state |ψ(t)⟩. According
to embedding framework, we set an enlarged embedding sim-
ulator with an initial state

∣

∣

∣
ψ̃(0)

〉

= |0⟩ ⊗ |0⟩ ⊗ |0⟩ and a
Hamiltonian H̃ = I ⊗X ⊗ Y − Y ⊗X ⊗ Z .
We implement this enlarged dynamical system in a three-

photon compiled simulator. Our experimental setup is showed
in Fig. 2. We use single photons produced from spontaneous
parametric down-conversion [27] as qubits, where the hori-
zontal (H) and vertical (V ) polarization are used to encode
|0⟩ and |1⟩, respectively. The compiled simulator runs in three
stages: (1) create an initial entangled source, (2) perform local
operations, (3) finally, readout the expectation of observables
XA0 and ZA0.
At stage (1), three single photons (ancillary, 1, and 2) are

entangled in W-type state (|011⟩ − |101⟩ + |110⟩)/
√
3 by

post-selecting the photon 3 in |0⟩ after mixing two pairs of
Bell-state (|01⟩ + |10⟩)/

√
2 photons on a polarization de-

pendent beam splitter (PDBS) with a transmission of 0.72
for H photons and 0.28 for V photons [28]. At stage (2),
the entangled photons are sent to perform local operations by
half wave plates (HWPs) and a polarization dependent Mach-
Zehner (MZ) interferometer. The ancillary photon was oper-
ated with X operation and the photon 2 was operated with
Z and X operations by passing through HWPs. Now the
photons state are (|000⟩ + |011⟩ − |110⟩)/

√
3. Then pho-

ton 1 passes through a polarization dependent MZ interfer-

ometer operated with
(

cos
√
2t 0

0 sin
√
2t/

√
2

)

, where the

coming photon is split into two spatial modes by a polariza-



III.4 Further scope on quantum simulations



Complexity 
Simulating/Computing 

Complexity

DQS + AQS+AQC

Neuromorphic 
Quantum Computing 

(NQC)

Quantum memristors provide complexity

Digital-Analog 
Quantum Simulation 

DAQS

Analog blocks provide complexity

Digital steps provide versatility

Digital-Adiabatic 
quantum computing 

DAQC

Digital steps provide versatility

Adiabatic blocks provide complexity

Embedding Quantum Simulators 
EQS

Optimal Quantum Control 
OQC

Bilbao Quantum Machine 
BQM

Quantum Machine Learning 
QML

Quantum Artificial Intelligence 
QAI


