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L. 1 Introduction to quantum simulations



What is a quantum simulation?

Definition

Quantum simulation 1s the intentional reproduction of the quantum aspects of a
physical or unphysical model onto a typically more controllable quantum system.

Richard Feynman

Qreek theatre

Mimesis or imitation is always partial,
this 1s the origin of creativity in science and arts

Let nature calculate for us

Quantum simulation <=> Quantum theatre



Why are quantum simulations relevant?

a) Because we can discover analogies between unconnected fields, producing a flood of
knowledge 1n both directions, e.g. black hole physics and Bose-Einstein condensates.

b) Because we can study phenomena that are difficult to access or even absent in nature,
e.g. Dirac equation: Zitterbewegung & Klein Paradox, unphysical operations.

c) Because we can predict novel physics without manipulating the original systems,
some experiments may reach quantum supremacy: CM, QChem, QFT, ML, Al & AL.

d) Because we can contribute to the development of novel quantum technologies
via scalable quantum simulators and their merge with quantum computing.

¢) Because we are unhappy with reality, we enjoy arts and fiction 1n all 1ts forms:
literature, music, theatre, painting, quantum simulations.



Quantum Platforms for Quantum Simulations

Optical lattices

Superconducting circuits

... among several others, including some attractive hybrid ones!



L.2 The Jaynes-Cummings model in circuit QED and trapped ions



Quantum simulation of the Jaynes-Cummings model in circuit QED

We could also see the JC model in circuit QED as a quantum simulation:
the two-level atom 1s replaced by a superconducting qubit, called artificial atom.

ho
H, = , Yo, +hwa'a+ hg(6+a + o’a*)

Quantum simulations are never a plain analogy, cQED has advantages in qubit control
as 1 microwave CQED, but also longitudinal and transversal driving as in optical CQED.
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Quantum simulation of the Jaynes-Cummings model in ion traps

The simplest and most fundamental model describing the coupling between
light and matter 1s the Jaynes-Cummings (JC) model 1n cavity QED.

_ ho,

O, +hw a'a+ hg(cfa + G_aT) | 5@»‘() | } :

We could consider the implementation of the JC model in trapped 1ons
as (one of) the first nontrivial quantum simulation(s).

H =mnmQ, (G+ae’¢’ +oa'e™ )

Red sideband excitation of the 1on = JC interaction

e O0000O0O © Hb IhT]Qb (G+aT€l¢b +G_Cl€_l¢b)

70 ym

Blue sideband excitation of the ion = anti-JC interaction

H, = hv(a'a+ %)

The quantized electromagnetic field is replaced by quantized 1on motion



1.3 Analog quantum simulation of the quantum Rabi model in circuit QED



The quantum Rabi model: USC and DSC regimes

The quantum Rabi model (QRM) describes the dipolar light-matter coupling.
The JC model 1s the QRM after RWA, it is the SC regime of cavity/circuit QED.

_ ho,

o.+hwa'a+ hg(6+ + G")(a + aT)

The QRM is not used for describing usual experiments because the RWA 1s valid in
the microwave and optical regimes in quantum optics, where the JC model is enough.




Ultrastrong coupling regime of the ORM

We have recently seen the advent of the ultrastrong coupling (USC) regime
of light-matter interactions in cQED, where 0.1< g/w < 1, and RWA 1s not valid.

T. Niemczyk et al., Nature Phys. 6, 772 (2010)

P. Forn-Diaz et al., PRL 105, 237001 (2010)

- Current experimental efforts reach perturbative and nonperturbative USC regimes where g/w ~ 0.1-1.0

- Recently, the analytical solutions of the QRM were presented: D. Braak, PRL 107, 100401 (2011).

There are interesting and novel physical phenomena in the USC regime of the QRM:

a) Physics beyond RWA: Bloch-Siegert shifts, entangled ground states, among others.

oa+oa +0'a" +o0a

b) Faster and stronger quantum operations

b.1) Ultrafast quantum gates (CPHASE) that may work at the subnanosecond scale

b.2) New regimes of light-matter coupling: Deep strong coupling (DSC) regime of QRM.



Deep strong coupling regime of the ORM

The DSC regime of the JC model happens when g/w > 1.0, and we can ask
whether such a regime could be experimentally reached or ever exist in nature.

I1=—0o,(—1)% = —(leXe]

lel,) = 825) < |e3,) «
1) = le2,) — |g3.) ~ ...

|g0,) ~

le0,) — |g (p=-1)

Forget about Rabi oscillations or perturbation theory:
parity chains and photon number wavepackets
define the physics of the DSC regime.
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J. Casanova, G. Romero, et al., PRL 105, 263603 (2010)



Is it possible to cheat technology or nature?

We may reach USC/DSC regimes 1n the lab but be unable to observe predictions,
mainly due to the difficulty in ultrafast on/off coupling switching.

What can we do then? Here, we propose two options:

a) We go brute force and try to design ultrafast switching techniques
that allow us to design a quantum measurement of relevant observables.

b) We could also reveal these regimes via quantum simulations.

b.1) Recently appeared several experiments realizing the quantum Rabi model
and light-matter coupling in USC/DSC regimes

b.2) Is 1t possible a quantum simulation of the QRM with access to all regimes?



Simulating USC/DSC regimes of the ORM

— Hp = h (™" o + Hee.) + Qs (e"?'0 + H.c.)

Hic = Taz 1+ hwa! a+ hg(o a—l—aaT)

Two-tone microwave driving

Leads to the effective Hamiltonian: QRM 1n all regimes

Y h
H = h(w —wi)a'a - 2202 + Egam(a +a")

A two-tone driving in cavity QED or circuit QED can turn any JC model
into a USC or DSC regime of the QRM model.

D. Ballester, G. Romero, et al., PRX 2, 021007 (2012)



Quantum simulation of relativistic quantum mechanics

d
1+1 Dirac equation Zh—¢ — (COg;p + mCQUz)w

dt

Weff = w —wq =0 > Hp = —"0,+ —=0,p

U =h Z Q, (ei(wjt+¢)0- +He) ¢=mn/2 Zitterbewegung, via measuring (X ) (¢)
j R. Gerritsma et al., Nature 463, 68 (2010)

1+1 Dirac particle + Potential

Add a classical driving to the cavity

H=Hjc+h Z (Q e Witt e gt 4 Hoe.) 4+ hé(e ™ al 4+ Hee.)

j=1,2
A5 hg Klein paradox
Hef = ——0, — —=0yp+ h\/igi R. Gerritsma et al., PRL 106, 060503 (2011)

2 V2
Measuring (X ) to observe these effects

Quadrature moments have been measured at ETH and WMI:

E. Menzel et al., PRL 105, 100401(2010); C. Eichler et al., PRL 106, 220503 (2011)



Experimental AQS of ORM: KIT

Simulation scheme  Ballester PRX 2 (2012)

H/h =4 . z—i—wrbTb+g<a b*+a+b)+% (1 coswit + sz cos wat)

transversal microwave drives

® rotating frame with respect to w/1

& (}Z 117 ~ 7 A (w1 —w:s A —i(wq —w:s
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Quantum simulation of relativistic quantum mechanics

Quantum state collapse and revival
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Analog quantum simulation of OQRM in trapped ions

H = h%(a0+e_25rt + H.c.) —|—h%(aTa+6_Z5bt + H.c.)

Wy = Wo — V + 0Oy
W = Wo + Vv + 0y,

Interaction picture

[\ )
Op — 0 Or + 6 7S _
H=h 5 Yata —h Z o, h%(a (ot —o7)
_ )
1

. e 1
High tunability  wi' = —5(& +6), wht = 5(@ ), g = -

Interaction picture transformation commutes
with the observables of interest o, a'a

J. S. Pedernales et al., Sci. Rep. 5, 15472 (2015)



Coupling regimes of the ORM
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1.5 Analog quantum simulation of the Dirac equation in trapped ions



Quantum simulation of the Dirac equation with trapped ions

Basic interactions in trapped ions

a) The carrier excitation:

H, =hQo, = hQ(G+ei¢ + G_e_i¢) )

b) The red sideband excitation:

H =hmnQ (G+ael¢r +oale™ )
c) The blue sideband excitation:

H,=mnQ, (G%freup” +0 ae " )

9=0—H, =hQo,

q):—zaH

d) The linear superposition of red and blue sideband excitations:

H., = hnflqb (ax+PBp,) with

s, = N0,

@ O0O0CO0O0OO0O O

Dy,



Simulating the Dirac equation

a) The linear superposition of carrier, red and blue sideband excitations, yield an effective Hamiltonian
corresponding to the 1+1 Dirac Hamiltonian for a free particle:

( ~ )
. - 72 2NAQ

ihigb:Hl’;’”gb:(znAQprx+hQGz)¢= 5 L 9,
ot \ 2nAQp.  —hQ

to be compared with the original:

a [, A
. mc-  cp,
lh—¢:HD(b:(caxpx+mczaz)¢= . |9
ot X cp, —mc ) e 00000 ©
(

, hQ = mc’

producing the parameter correspondence: 3 -
2NAQ =c

b) Similar steps produce the quantum simulation of higher dimensional Dirac equations

L. Lamata, J. Ledn, T. Schéatz, and E. Solano, PRL 98, 253005 (2007)



c) If we consider the relativistic limit, me’ < Ccp, (m — O) , the Dirac dynamics produces
constantly growing Schrodinger cats as in quantum optical systems:

HY =2nAQo . p, +hQo. — HY'=2nAQo p,

See, for example, Solano et al., PRL (2001), Solano et al., PRL (2003), Haljan et al., PRL (2005),
and Zahringer et al., PRL (2010).

d) If we consider now the nonrelativistic limit, mc’ > cp. , the Dirac dynamics would be happy
to have a quantum optician calculating the second-order effective Hamiltonian:

2 2
Hp, =2nAQ(c e +0 ¢ )p, > H 4=0. L =g L
1719 2m
2N*A’Q?
with simulated mass m = VZSE 5 M
21°€

This 1s a free Schrodinger dynamics derived from the nonrelativistic limit of the Dirac equation!



¢) The Zitterbewegung (ZB) is a jittering motion of the expectation value of the position operator <x(t)> :
It appears as a consequence of the superposition of positive and negative energy components.

In the Heisenberg picture, we can write the evolution of the Dirac position operator

2 .
X(t) — x(O)—I— C P, f + ihc (eZiHDt/h . 1) Gx . Cp,
H 2H ), H,

f) The prediction of ZB is considered controversial, see several papers appeared in the last few years
questioning existence/absence. The predicted ZB frequency/amplitude for our “relativistic” ion are

— ~ 2 2
o ~2|Ep| 17 =2y pic* + m*c /h=2\/(217A§2p0) /h+Q o, ~0_10°H2
7 /mcz\2 ni*QQA

X X, ~0—10° A
2 ome\E, ) T anP&iaTpt + Q2

~A

From a theoretical point of view, the quantum simulation of the ZB looked cool!

However, the ZB amplitude was disappointing: how can one measure in the lab the ion position as a
function of the interaction time with a resolution beyond the width of the motional ground state?



g) The answer to the previous question 1s: designing a highly precise measurement of the ion position!

We had proposed in 2006 such a method called “instantaneous” measurements for CQED and trapped ions.

If the 1nitial state of the probe qubit and the unknown motional system is

0. (0)=|+)(+|p, where |+>=%(|g>+|e>)

it can be proved that after a red-sideband excitation during an interaction time “t”

dP, (1)

(x(1)) = where P.(t)=Tr [pat_m(t)|e) <e|]

t=0

It 1s possible to encode relevant motional system observables in the short-time dynamics of
the probe qubit, in fact we can get the full wavefunction from the first and second derivatives at t=0!

We have produced several papers studying different results for the “instantaneous™ measurements.
Some of them are theoretical and some of them have already seen the light of experiments.

Lougovski et al., Eur. Phys. J. D (2006); Bastin et al., J. Phys. B: At. Mol. Opt. Phys. (2006); Franca Santos et al., PRL (2006);
Gerritsma et al., Nature (2010), Zahringer et al., PRL (2010); Casanova et al., PRA 81, 062126 (2010).
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h) We have also proposed the quantum simulation of the Klein Paradox

ihg(b =H, D= (Cprx +ox+ mczaz)(l)
[

L b d
| Ops | 0Ls Ops 110
0 b 10
o AT
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L !
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The Dirac Linear Potential 1s not always reflecting the particle. This amounts to a Klein Paradox behavior,
where the particle can move from positive to negative energy components via tunneling.

J. Casanova et al., PRA 82, 020101(R) (2010); R. Gerritsma et al., PRL 106, 060503 (2011).



