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Hybrid devices for Quantum Information Processing

Lectures 1 and 2: with Fabio Pedrocchi

Thermal Quasiparticles and Majorana Braiding =3

| discuss a model calculation of the decohence of Majorana qublts durmg braiding in a
trijunction, due to thermally generated quasiparticles (bosonic environment). The
limitations to coherence are significant.

Lecture 3:

Semiconductor Hall-effect Gyrators and Circulators

Calculations of driven propagation of chiral edge magnetoplasmons in the integer
guantum Hall effect indicate a promising route for these devices in current
experiments. They are very important for the miniaturization of multi-qubit quantum

computers.



For today:

* What are anyons in general? Compute by braiding!
 Our anyons: Majorana modes

* Canonical model: “Kitaev” wire

* Diagonalize using Majorana-operator representation
e OQur first qubit — a ground-state degeneracy

* Moving and braiding Majoranas — the T junction

* Why are Majoranas non-abelian?

* The problem for lecture 2:
 Does “topological” really make Majorana qubits fault tolerant?



Topological Quantum Computing

Topological Quantum Computation A. Kitaev, 1997
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Adiabatic motionof M
one-particle ~

potentials \#/

Topological Order

Degeneracy |¢1>,W2>,. ..

1) 1) Uap, Upe| # 0

[1ho) | =——> Uap - | [92)
depends only

on topology ——> hon-abelian anyons



“Kitaev” Wire

Archetypical (1D) model with anyons
(simple model for a nanowire)
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Kitaev Wire

Archetypical (1D) model with anyons
(simple model for a nanowire)
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Kitaev Wire

|,uj\ < 2t Topological phase (Majorana bound states)
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Q Kitaev Wire
etypical (1D) model with anyons

(S|ry‘\ple model for a nanowire) i
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Kitaev Wire

topological

3 Majorana bound states appear at the junction between
topological and non topological segments

Majoranas can be moved




Trijunction

Not enough space to exchange Majoranas

—> Trijunction Hy(r)= Hgy(r)+ Hy (1) — (taTL/za,LH — Aarjsap41 +hc.)
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Encoding in fixed parity sector

Y1772 Y374 = +1
Fourfold
degeneracy

= -

Alicea et al., Nat.
Phys. 7, 412 (2011)



Logical errors

Z-error Z-error X-error

X-error Y-error Y-error



week ending
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Braiding

T
Uiz = exp YRERE
Alicea et al., Nat. Phys. 7,

412 (2011)

—> Ising anyons

Adiabaticity: braiding
time slow compared
to 1/A



Fabian Hassler, “Majorana Qubits”,

denote the Majorana operators after the exchange by v, and 7. ;. ArXiv:1404.0897
/ !
Yi+1 Vi
/I e / 1‘ / f— / 1-
Vi = Bz',z'+1’}iBz',z'+1a Vi1 = Bz’,z’+1”)z'+le',z'+1- 01}/' I

Since the position of the two Majoranas are interchanged by this operation,

Vi Vi1
Erroneous prime!!

/ / Q L
Vi = QiTYitl, Vi1 = Qa5 Oy, g € P (Hermiticity)

(physical electron number ->
Bogoliubov fermion parity)
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Thermal environment

Main focus: how does a thermal environment destroy the stored
guantum information when braiding is executed?

H(r)=Hr(r)+ Hp + Hsp

Bosonic Bath  Hp = Z B;
J

System-Bath coupling Hsg = - B; ® (2ala; —1)=—i ) B, .:.@
' j

J

Markovian master equation in adiabatic limit

ps(T) = —i[Hr(7), ps(7)] + D(ps(7))

l N\

Unitary evolution Dissipation <> I (Ohmic bath)



Approximately end of lecture 1



Hybrid devices for Quantum Information Processing

Lectures 1 and 2: with Fabio Pedrocchi

Thermal Quasiparticles and Majorana Braiding =3

| discuss a model calculation of the decohence of Majorana qublts durmg braiding in a
trijunction, due to thermally generated quasiparticles (bosonic environment). The
limitations to coherence are significant.

Lecture 3:

Semiconductor Hall-effect Gyrators and Circulators

Calculations of driven propagation of chiral edge magnetoplasmons in the integer
guantum Hall effect indicate a promising route for these devices in current
experiments. They are very important for the miniaturization of multi-qubit quantum

computers.



For today (Tuesday):

* The problem for lecture 2:
 Does “topological” really make Majorana qubits fault tolerant?

 Bosonic bath — no parity problem?

 Bath causes creation, hopping, and destruction of thermal
quasiparticles

* Derivation (Davies) of how all these terms emerge from one
deformation potential

e Failure of error correction when the Majoranas are braided
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aasic error processes
Excitations aré always created in pairs
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\
Creation bulk, energy cost is -4A

Annihilation bulk, energy cost is 4A : > Non topological

Hopping bulk, energy cost is 0 oy

Annihilation boundary, energy cost is I
2 I Hqgp = —iZBj & Y25 -172;

Hopping onto (out from) I ’
Majorana, energy cost 2A (-24) ®

Creation boundary, energy cost is -2A
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Normal-metal quasiparticle traps for superconducting qubits
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The presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence.
While it is difficult to prevent the generation of quasiparticles, keeping them away from active elements of the
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Thermal environment

Main focus: how does a thermal environment destroy the stored
guantum information when braiding is executed?

H(r)=Hr(r)+ Hp + Hsp

Bosonic Bath  Hp = Z B;
J

System-Bath coupling Hsg = - B; ® (2ala; —1)=—i ) B, .:.@
' j

J

Markovian master equation in adiabatic limit

ps(T) = —i[Hr(7), ps(7)] + D(ps(7))

l N\

Unitary evolution Dissipation <> I (Ohmic bath)



Davies Prescription

Markovian master equation in the weak-coupling limit

D(ps(t)) = >: D 7 (w) (A (w)ps () (A (w))]

WA, o)

/

Jump operator
Spectral function

+00
i (w) :/ ds e™*(B](s)B;(0))

— OO



Davies Prescription

System-Bath interaction

Hop = —2 ZBj X CL;CL]' = —iZBj & Y25—1725

J J
Rewrite in terms of eigenoperators (corrects a few factors of 2 on p.
. i 2 17 of Pedrocchi et al. PRB. Our
HSB — —’LBl 024 (d() —+ dO)(dl -+ dl) apologies! No change of the
physics.
[L/2]—-1
— Y Ba®(dyj_1 —dy,_;)(da; +db))
g=1
[L/2]—1
- Z Baj11 ® (doj — dy;)(dajr1 + doyj; )
g=1



Davies Prescription

Terms have a clear physical meaning:
[L/2]-1

[L/2]—1

Z Bajt1 ®— 1B ®

Energy cost +2A Energy cost: 0

Acreation .=

[L/2]-1

—iB; ®‘+ (B2; ® Baji1 )

Energy cost: -2A Energy cost: -4A



Davies Prescription

Time evolution under H g

ezHSt AC e—ZHSt

= D7 ) (mle S k) (kAL (Cle™ 5 ) (n

m.,n. k.2

= 37 ) ) (m| A ) (n

m,n
——> Fourier transform gives the jump operators

Acw) =) [m)(m|Ac|n)(n]



Davies Prescription

——> Fourier transform gives the jump operators

Acw) =) |m)(m|A¢|n){n

Example of jump operators:

Abopping (218N = > [m)(m|dod]|n)(n]

Em—€n=—2|A|

AP ns(0) = Y m)(m|dyj_ydb; + dayjdb;_|n)(n)

€7n _en :O

Aireation(_2|A|) — Z |m> <m|d(]?)d1|n> <7’L|

Em—€n=—2|A|



Davies Prescription

Pauli Master equation

Technical Condition: (satisfied in our model)

(Ma |A;Ly (w)|ng) # 0 gse?g:s:sjz;nﬁe

transitions

k) < |mgp)

‘ Diagonal elements decouple from off-diagonal
elements



Davies Prescription

‘ Diagonal elements decouple from off-diagonal
elements

dP(n,T)
dT

— Z W(n|m)P(m, ) — W(m|n)P(n, )]

m

With transition rates
W (n|m) = 5(Wmn )| (m[| A" (wimn) n)|*
We take in our model an Ohmic spectral function

W
1 — exp(—fw)

V(W) =k




Error Correction

Successful
recovery

With immobile Majoranas, the
probability of failure at a
given time becomes smaller
for larger trijunctions



Majoranas and Interactions

H—MI—‘HH‘

Adiabatic evolution in the
presence of excitations




Dangerous errors

Local error process +
braiding motion

X-ERROR l

Non local error process



Dangerous errors

Error correction: Are dangerous errors
- only Win the bulk are visible really a problem ?
- Pair quasiparticles at

minimal distance



Dangerous errors

X-ERROR



Dangerous errors

Error correction: only W in Are dangerous errors
the bulk are visible really a problem ?

NO ERROR



Dangerous errors

Pfailure
012 Confirmed via Monte Carlo simulations
L =50
L =30
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Prailure

0.12

Dangerous errors

Two different error processes lead to the same error syncirom5eO

0.10} ‘ Q . o o
——> Mo error Correcting algorithm.ean distingUish the faulty
hind the successful cases
0.08} . . . . M
Lifetime is independent of the system’s size
Confirmed via Monte Carlo simulations L =30
0.06
" L =20
0.04 ~
/'
0.02} l ~~~~~~~~~~~
Ii,dv:-‘“gt;oooo - 1.o>;1o6 1.5x108 2o>l<1o6 2.5x105 3.0x10°



Dangerous errors

Braiding Majoranas in a trijunction setup is problematic

—> Braiding renders errors non local
—> Dangerous errors

—> Lifetime does not grow with system size

Other schemes ?

THANK YOU |



Backup



Linear case

p(t)

One Majorana is delocalized
—e 6M—0 @ &—o o0—0 ©

|

Delocalized Majorana



Trijunction case

o—0 ©o—0 o—0 ©—0

™ Delocalized Majorana
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