

aboratoire pierre aigrain electronique et photonique quantiques SE²ND erc CirQys

Microwave cavity as a probe of Kondo effect

« Electrical conductance from a frozen charge »

M.M. Desjardins **LPA, ENS Paris**

Exp: L.C. Contamin, L.E. Bruhat, J.J. Viennot, M.C. Dartiailh, M.R. Delbecq, T. Kontos

Theory: A. Cottet, B.

Using tools of cavity Quantum ElectroDynamics

• cQED + closed system

• cQED + open system

J.-M. Raimond, M. Brune, and S. Haroche, RMP **73**, 565 (2001)

L.E. Bruhat, PRX, to be published

- A. Wallraff et al., Nature 431, 162 (2004)
- K. D. Petersson et al., Nature **490**, 380 (2012)
- J.J. Viennot et al, Science **349**, 408, (2015)

Simplest open system : the Anderson model

Anderson hamiltonian leads to a *quantum many body effect*: the Kondo effect

What can we learn on the Kondo effect with a cQED architechture?

The experimental setup

Stamped single wall carbon nanotube quantum dot coupled to microwave photons

Joint measurement of the conductance and the transmission of the cavity

Charge susceptibility

The charge susceptibility of a QD connected to its leads shifts the transmission

$$T(\omega) = \frac{-i \kappa}{(\omega - \omega_{cav}) - i \kappa + g^2 \chi(\omega)}$$

$$\Delta \phi \sim \frac{g^2}{\kappa} * \operatorname{Re}(\chi)$$

Vg (V)

Electron-photon coupling calibration

lpa

Kondo regime

• Virtual processes

Coherent screening

 $T << T_K$

• Single occupied charge state

Antiferromagnetic coupling

New resonance: Kondo states

'Transparent' Kondo/AS resonance

• Kondo regime :

$$U \sim 2meV \text{ and } \Gamma \sim 1 \text{ meV} \qquad T = 300mK \ll \ T_K = 6K$$

Kondo resonance is 'transparent' to photons while charge peaks visible.

Charges transfert with a frozen charge dynamics in the dot.

lpa

Conclusion

✓ cQED architecture can be used as a *sensitive* and precise non-perturbative probe to study condensed matter problems

✓ Observation of zero charge dynamics of the Kondo cloud.

- Quantum quench of Kondo cloud
- Quantum simulation of strongly correlated fermion-boson systems

Perspectives

- Majorana fermions in CNT
 - Superconducting electrodes + ferromagnetic bottom gates

R. Egger et al, PRB **85**, 235462 (2012)

- Coupling them to the cavity
 - Signature of the self adjoint property $\gamma^{\dagger}=\gamma$

A. Cottet et al, PRB **88**, 195415 (2013)

Supplementary

