EMERGING QUASI-PARTICLES & TOPOLOGY

non-local separation provides topological protection

NEW: design and create a Majorana as a quasi-particle in solid state.

=> emerging state arising from collective behaviour.

...,Kitaev, Read, Fu, Kane, Das Sarma, Beenakker, Alicea,.... (see review Nick Read, Physics Today July 2012.)

Fundamental physics in collective phenomena

"If this rate of decay continues indefinitely, we estimate that the persistent current in this SC sample will die out after 3 x10⁹² years. In any practical sense then, the persistent current is persistent."

Topological

ing

Topological protection

- => Möbius strip against twists
- => QHE chiral edge states against backscattering

Two physically separated degenerate quantum states

TOPOLOGICAL QUBITS

Quantum bits

$$\emptyset = 0 + 0$$
 "analog" qubit (decoherence)

topologically protected "digital" qubit

(Kitaev, Freedman,...)

$$N = \text{even}$$

$$N = \text{odd}$$

$$E = 0$$

$$N = \text{odd}$$

E(even parity) = E(odd parity) = 0

parity qubit with qubit states stored non-locally

Topological Quantum Computing

Microsoft®

Majorana braiding

Fusion

Electron-Hole annihilation

Majorana annihilation

First result:

Electron sea

Majorana annihilatie

Second result:

Fusion Rules

$$\sigma \times \sigma = I + \psi$$

Fusion by:

- Distance
- Interaction

splits the twofold ground-state degeneracy. The lower and upper states correspond to the Ising anyons coalescing into the identity (I) and fermion (ψ) fusion channels. While fusion Single election has internal degrees-of-freedom and braiding are intimately linked, establishing the former experimentally is expected to be much simpler; see Figs. [5] * 2 Spin states, degenerate at B=0 5= 1 @ 8 = 0 -- fusion of two electrons forms a single 2-particle state with 4 instrnal degrees-of-freedom. - fusion rule 1/2 × 1/2 = 0 + 1
= singlet + triplet degeneracy litted by bringing electrons local perturbation 2.9. B = 0@ A splits / lifts # = #

pair of anyons hybridizes the associated Majorana modes and

In the present context the ends of 1D topological su-

uires fast gate operation

2 dezeneate levels 2 majo's local perherbation has no effect. degeneracy lifted when bringing together OXO=I+Y I = identity =0 even state y = fermion = odd state channel

Majorana island device

S M Albrecht *et al. Nature* **531**, 206–209 (2016) doi:10.1038/nature17162

tuning:
$$\frac{E_J}{E_L}(\bar{\Phi})$$

$$E_J \gg E_C$$

$$E_J \ll E_C$$

$$|\text{even}\rangle |\text{odd}\rangle$$

$$|Q_o
angle = |Q_o
angle \ |Q_e
angle$$

Braiding

It takes two full rotations to come back to initial state

$$B_{23}[00] = \frac{1}{\sqrt{2}}(1+\sqrt{2}\sqrt{3})|00\rangle \qquad \qquad \begin{cases} \sqrt{2} = i(\sqrt{1+\sqrt{2}}) \\ \sqrt{2} = i(\sqrt{1+\sqrt{2}}) \end{cases} \qquad \qquad \begin{cases} \sqrt{3} = i(\sqrt{1+\sqrt{2}}) \\ \sqrt{3} = \sqrt{2} + \sqrt{2} \end{cases}$$

$$B_{300} = \frac{1}{\sqrt{2}}(100) + i(11) \qquad \qquad \begin{cases} \sqrt{3}\sqrt{2} \text{ or } \end{cases}$$

$$f_2 = c \left(f_1 - f_1 \right)$$

 $f_3 = f_2^+ + f_2$

$$B_{23}(00) = \frac{1}{\sqrt{2}}(1 + \frac{1}{2}\frac{1}{5})(00) + \frac{1}{2}i(\frac{1}{1} + \frac{1}{1})$$

$$= \frac{1}{\sqrt{2}}(100) + \frac{1}{2}(11)$$

$$B^{2}(100) = \frac{1}{\sqrt{2}}(100) + i(11)$$

$$B^{2}(100) = \frac{1}{2}(1 + \frac{1}{3}\frac{1}{2})(100) + i(11) = \frac{1}{2}(1 + \frac{1}{3}\frac{1}{2})(100) + i(11) + i(11) - 100$$

$$B^{2}(100) = \frac{1}{2}i(11)$$

Proposals for braiding Majoranas

Transmon as a charge parity sensor

- Readout via parity to charge conversion by changing E_J/E_C
- Operation + readout must be carried out before quasiparticle poisoning disturbs parity
- Superconducting circuit elements must survive B > 0.5 T Majorana conditions

Braiding protocol

Readout (Probabilistic)

Readout (Deterministic!)

(a) Basic braiding operation

(b) Full protocols: Single and double braid

FIG. 10. (a) three valves a superconduct rotating the t qubit rotation topological que path) rotates into an equal qubit to $|1\rangle$ a

Iodulating the ng topological is nontrivially erifying 'rigid' ed islands, the le braid (lower equbit rotates braid flips the

PARITY CONSERVATION OR QUASI-PARTICLE POISONING

Kitaev

Lutchyn et al. Oreg et al.

numerical work advanced device proposals

Hyart, van Heck, Fulga, Burrello, Akhmerov & Beenakker, PRB (2013)

Explicit demonstration of parity conservatioin

Our best (QP) parity relaxation time: ~1 minute

Note: $E_J = 50 \mu eV$, => $f_J = 25 GHz$

ratio of 12 orders of magnitude (between parity change over tunneling)

van Woerkom, Geresdi, LK, Nature Physics (2015)

NANOWIRE CROSSES

Growth by Diana Car, Sébastien Plissard and Erik Bakkers

Supercurrent through nanocross

⇒ Transparent epitaxial (!) interface between wires

