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non-local separation provides topological protection 
 

NEW: design and create a Majorana as a quasi-particle in solid state. 

          => emerging state arising from collective behaviour. 

 
 
      …,Kitaev, Read, Fu, Kane, Das Sarma, Beenakker, Alicea,.... 
       (see review Nick Read, Physics Today July 2012.) 
 
 



Fundamental physics in collective phenomena 

“If this rate of decay continues indefinitely, we estimate that the 
persistent current in this SC sample will die out after 3 x1092 years.  
In any practical sense then, the persistent current is persistent.” 



Topological protection  
 => Möbius strip against twists 

       => QHE chiral edge states against backscattering 
 

sample size and shape doesn’t matter 



Topological protection  
 => Möbius strip against twists 

       => QHE chiral edge states against backscattering 
 

superconductor	

Two physically separated degenerate quantum states 
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(Kitaev, Freedman,…) 

Quantum bits 
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parity qubit 
with qubit states  

stored non-locally  

E(even parity) = E(odd parity) = 0  
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Majorana braiding 
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Electron-Hole annihilation 

Electron  

Hole 

Electron sea 



First result: 
 
2 x (½ electron ± ½ hole) = 0 
 

Majorana annihilation 

Electron sea 



Second result: 
 
2 x (½ electron ± ½ hole) = electron + hole 

Majorana annihilatie 

Electron sea 



σ x σ = Ι + ψ
 

Fusion Rules 

Electron sea 

Fusion by: 
-  Distance 
-  Interaction 
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Majorana island device 









Braiding	



It takes two full rotations  
to come back to initial state 
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Braiding with JJ arrays
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FIG. 3: A T-junction allows for adiabatic exchange of two Majorana
fermions bridged by either a topological region (dark blue lines) as
in (a)-(d), or a non-topological region (light blue lines) as in (e)-(h).
Transport of Majorana fermions is achieved by gates as outlined in
Fig. 2. The arrows along the topological regions in (a)-(d) are useful
for understanding the non-Abelian statistics as outlined in the main
text.

restoring the coupling generically fuses these Majoranas into
an ordinary, finite-energy state.

As an illustrative example, consider the setup of Fig. 3(a)
and model the left and right topological segments by Kitaev’s
model with µ = 0 and t = |⇥| in Eq. (1). [For simplic-
ity we will exclude the non-topological vertical wire in Fig.
3(a).] Suppose the superconducting phases are ⌅L/R in the
left/right chains and that the fermion cL,N at site N of the left
chain couples weakly to the fermion cR,1 at site 1 of the right
chain via H� = ��(c†L,NcR,1 + h.c.). Using Eq. (2), the end
Majoranas at the junction couple as follows,

H� ⇤ � i�

2
cos

�
⌅L � ⌅R

2

⇥
�L
B,N�R

A,1 (8)

and therefore generally fuse into an ordinary fermion18. An
exception occurs when the regions form a ⇤-junction—that is,
when ⌅L � ⌅R = ⇤—which fine-tunes their coupling to zero.
Importantly, coupling between end Majoranas in the semicon-
ductor context is governed by the same ⌅L � ⌅R dependence
as in Eq. (8)1,2.

Finally, when all three segments are topological, again only

a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇤ junctions. Recall from
Eq. (6) that the spin-orientation favored by spin-orbit coupling
determines the effective superconducting phase of the semi-
conducting wires. Two wires at right angles to one another
therefore exhibit a phase difference of ⇤/2, well away from
the pathological limits mentioned above.

The T-junction permits two types of (topologically equiv-
alent) exchanges. First, consider the configuration of Fig.
3(a) where the horizontal wire resides in a topological phase
while the vertical wire is non-topological. Counterclockwise
exchange of �1 and �2 can be implemented as outlined in
Figs. 3(b)-(d). Here, one shuttles �1 to the junction by mak-
ing the left end non-topological; transports �1 downward by
driving the vertical wire into a topological phase; transports
�2 leftward in a similar fashion; and finally directs �1 up and
to the right. Exchange of two Majorana fermions connected
by a non-topological region as in Fig. 3(e) can be similarly
achieved—counterclockwise exchange of �1 and �2 proceeds
as sketched in Figs. 3(f)-(h).

While the Majoranas can now be exchanged, non-Abelian
statistics is not obvious in this context. Recall how
non-Abelian statistics of vortices arises in a spinless two-
dimensional p+ ip superconductor6,7, following Ivanov’s ap-
proach. Ultimately, this can be deduced by considering two
vortices which bind Majorana fermions �1 and �2. Since
the spinless fermion operators effectively change sign upon
advancing the superconducting phase by 2⇤, one introduces
branch cuts emanating from the vortices; crucially, a Majorana
fermion changes sign whenever crossing such a cut. Upon ex-
changing the vortices, �2 (say) crosses the branch cut emanat-
ing from the other vortex, leading to the transformation rule
�1 ⌅ �2 and �2 ⌅ ��1 which is generated by the unitary
operator U12 = exp(⇤�2�1/4). With many vortices, the anal-
ogous unitary operators Uij corresponding to the exchange of
�i and �j do not generally commute, implying non-Abelian
statistics.

Following an approach similar to that of Stern et al.25, we
now argue that Majorana fermions in semiconducting wires
transform exactly like those bound to vortices under exchange,
and hence also exhibit non-Abelian statistics. This can be
established most simply by considering the exchange of two
Majorana fermions �1 and �2 as illustrated in Figs. 3(a)-(d).
At each step of the exchange, there are two degenerate ground
states |0⌃ and |1⌃ = f†|0⌃, where f = (�1 + i�2)/2 annihi-
lates |0⌃. In principle, one can deduce the transformation rule
from the Berry phases ⇧n ⇥ Im

⇤
dt⇧n|�t|n⌃ acquired by the

ground states |n⌃ = |0⌃ and |1⌃, though in practice these are
hard to evaluate.

Since exchange statistics is a universal property, however,
we are free to deform the problem to our convenience pro-
vided the energy gap remains finite. As a first simplification,
since the semiconductor Hamiltonian and Kitaev’s model in
Eq. (1) can be smoothly connected, let us consider the case
where each wire in the T-junction is described by the latter.
More importantly, we further deform Kitaev’s Hamiltonian to
be purely real as we exchange �1,2. The states |0⌃ and |1⌃

Simulate braiding via JJ arrays. Note that there is 
one pure Majorana degree of freedom on the 

central tri-junction.
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FIG. 1. Semiconducting wire coated with a superconducting
island and bulk superconductor that are bridged by a gate-
tunable ‘valve’. The valve controls the carrier density in the
barrier region and thereby modulates the ratio of Josephson
energy E

J

to the island charging energy E
C

. (a) When the
valve is open (E

J

� E
C

) an applied magnetic field B drives
the wire into a topological superconducting state hosting Ma-
jorana zero modes �1,2. The system thus supports degenerate
ground states with even and odd fermion parity. (b) Closing
the valve (E

J

⌧ E
C

) restores charging energy and converts
these parity eigenstates into non-degenerate states with island
charges Q

o

and Q
e

as shown on the right. The gate-controlled
‘parity-to-charge conversion’ illustrated here is central to the
manipulation and readout schemes developed in this paper.

When the valve is ‘open’—i.e., one or more modes in
the barrier provide su�cient coupling that the junction’s
Josephson energy dominates over charging energy—the
island hosts a pair of Majorana zero modes �

1,2

that
encode a topological degeneracy between ground states
with even and odd fermion parity; see Fig. 1(a). Clos-
ing the valve by depleting the barrier renders charging
energy dominant over the Josephson energy, lifting the
degeneracy of parity eigenstates by converting them into
charge states of the island, as sketched in Fig. 1(b). We
note that this scheme closely resembles the ‘Coulomb-
assisted’ Majorana manipulation approaches described in
Refs. 32, 33, and 41 (see also Ref. 42), but uses depletion
gates rather than fluxes to control the ratio of Josephson
coupling to charging energy.

Gate tuning of Josephson and Coulomb energies is par-
ticularly useful when integrated into devices with multi-
ple islands. For instance, this capability allows Majorana
zero modes to be initialized by evolving known charge
states into degenerate parity eigenstates [e.g., smoothly
passing from Fig. 1(b) to (a)], alter the length of a topo-
logical superconductor by selectively opening and closing
valves connecting adjacent islands, introduce rotations
within the ground-state subspace, and braid Majorana
modes in network geometries. Converting parity eigen-
states back into charge states—an adaptation of ‘spin-to-
charge conversion’ used in spin qubits—further enables
readout of the state formed by Majorana modes.

We discuss three specific experiments that use these
capabilities:

Fusion-rule detection (Sec. III). A fundamental

property of non-Abelian anyons is their behavior under
fusion, which describes how these emergent particles co-
alesce. In our setups, the topological superconductors’
endpoints, where Majorana zero modes localize, essen-
tially realize ‘Ising’ non-Abelian anyons. Ising anyons
obey a particularly simple fusion rule: pairs can either
annihilate or combine into a fermion  . These two ‘fu-
sion channels’ correspond to the ordinary fermionic state
arising from a pair of hybridized Majorana modes being
empty or filled. The presence of multiple fusion chan-
nels intimately relates to non-Abelian statistics, and in
fact is commonly used to define non-Abelian anyons in
the first place. Detecting this foundational property has
nevertheless received very little attention.

We introduce two experimental methods for probing
Ising-anyon fusion rules, both invoking a relatively sim-
ple single-wire geometry with two superconducting is-
lands and three gate-tunable valves. The first method
operates the valves to nucleate a set of anyons and then
restore charging energy to fuse them in a manner that
accesses the fusion channels with known probabilities;
charge sensors detect the fusion outcomes. The sec-
ond method converts the microscopic di↵erence between
the two fusion channels into a macroscopic current, sim-
plifying the setup by eliminating charge sensing. This
Majorana-mediated charge pump cyclically creates and
fuses anyons, shuttling a Cooper pair across the system
whenever the  channel appears. As a bonus, this setup
permits time-domain measurements of device parameters
such as quasiparticle poisoning times, excitation gaps,
and residual Majorana-zero-mode splittings.

Topological qubit validation (Sec. IV). A single-
wire, two-island geometry supporting four Majorana
modes realizes a prototype topological qubit. The two
fixed-parity degenerate ground states available in such a
setup form the logical |0i and |1i states. How can one
validate the topological nature of this qubit (assuming
the usual conditions required for topological protection
are maintained)? For instance, what set of measurements
will distinguish a Majorana qubit from a similar setup in
which degenerate ground states instead arise from acci-
dental zero-energy Andreev bound states? We will show
that the di↵erence can be found in the coherence times
and oscillation frequency, !

0

, of the qubit. In particular,
relaxation and dephasing times, T

1

and T
2

, as well as !
0

,
exhibit exponential dependence on the (experimentally
tunable) splitting of ground states encoded by Majorana
modes, leading to scaling relations among these quanti-
ties that can be used to identify topological protection.
Topological qubit validation along these lines uses the
same setup as fusion-rule detection, together with the
ability to implement qubit rotations via pulsing of gate-
tunable valves.

Non-Abelian statistics (Sec. V). Moving to
branched geometries, we present a new approach to
demonstrating non-Abelian statistics and the associated
fault-tolerant qubit rotations in wire networks. Opera-
tionally, this approach resembles Coulomb-assisted braid-
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n > 1. This leads to the relation Qfinal = −Qp=0 = λλ̃Qp=0,
proving the consistency condition for non-Abelian statistics,
i.e., λλ̃ = −1.

VI. EXCHANGE AROUND A TRIANGULAR LOOP

A specific realization of the non-Abelian statistics in
nanowire systems is provided by a triangular loop geometry
shown in Figs. 3 and 4. The triangular loop consists of one end
(A2,B2 and C2) of each of three TS segments (A, B, and C)
connected by NTS segments to form a triangle. The other ends
are labeled A1, B1, and C1. The MFs to be exchanged, referred
as 1 and 2, are assumed to be localized at two of these six
ends of TS segments. Each of the steps for the MF exchange
(shown in Figs. 3 and 4) consists of moving exactly one MF
from one position to the other (shown by dotted arrows) by
adiabatically turning off the tunneling in some wire segment
and increasing it in an adjoining segment as discussed before.

The procedure to exchange the MFs 1 and 2 at the ends
of different TS segments through the trijunction takes place
in four steps shown in Fig. 3. The signs associated with
the exchange λ and λ̃ can be determined by following the
trajectories of the MFs 1 and 2 and applying Eqs. (7) and (9).
From Fig. 3, it is clear that the sequence of positions followed
by the MFs 1 and 2 are

MF 1: A2
C2−→
(3)

B2,

(14)
MF 2: B2

C2−→
(2)

C1
C2−→

(4)≡(1)
A2,

respectively. Here we show only the MF that is moved in
each step, which is numbered in Fig. 4 as (j = 1, . . . ,4)
[marked below the arrows in Eq. (14)]. The MF motion is
shown using the notation defined in Eq. (8) so that the sign can
be calculated using Eq. (7). Applying Eq. (7), the parameters
λ and λ̃ simplify to

λ = −λ̃ = sgn(ζA2B2 )χ , (15)

where χ = sgn(ζA2B2ζB2C2ζC2A2 ) is defined to be the chirality
of the trijunction.27

FIG. 3. (Color online) MFs 1 and 2 at the ends of different TS
segments are exchanged. This is achieved by switching tunnelings
on and off on TS and NTS segments in four steps going from a state
shown in one panel to the next panel. The dotted arrow shows the
motion of MF from the previous panel. The labeling for the sites
A1,A2, B1,B2, and C1,C2 is shown in (1).

FIG. 4. (Color online) MFs 1 and 2 at the ends of the TS segment
on the left leg are exchanged in seven steps similar to Fig. 3. Step
(7) transfers state shown in (6) back to (1) with the effect that the
Majoranas 1 and 2 are interchanged.

Similarly MFs at the ends of the same TS segment can be
exchanged using six steps shown in Fig. 4. From Fig. 4, it is
clear that the sequence of positions followed by the MFs 1 and
2 are

MF 1: A1
A2−→
(3)

C2
B2−→
(4)

B1
B2−→

(7)≡(1)
A2,

(16)
MF 2: A2

C2−→
(2)

C1
C2−→
(5)

B2
A2−→
(6)

A1,

respectively. Step (7) is not explicitly shown in Fig. 4, since it
is equivalent to (1). Applying Eq. (9), the parameters λ and λ̃
simplify to

λ = −λ̃ = sgn
(
ζA1A2

)
χ , (17)

where χ is the junction chirality.
Thus, using Eqs. (17) and (9), we obtain the the result that

the unitary time evolution of the MFs γ1 and γ2 under exchange
can be described by the unique braid matrix

U = e
π
4 χsgn(ζ12)γ1γ2 , (18)

where ζ12 is the tunneling amplitude of the segment separating
γ1 and γ2. The quantities ζ12 and χ for a specific network are
calculated in the Appendix.

VII. CONCLUSION

Non-Abelian statistics for MFs at the ends of TS nanowire
segments can be realized by introducing time-varying gate-
controllable tunnelings between MFs in a nanowire system to

094505-5
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FIG. 1. Semiconducting wire coated with a superconducting
island and bulk superconductor that are bridged by a gate-
tunable ‘valve’. The valve controls the carrier density in the
barrier region and thereby modulates the ratio of Josephson
energy E

J

to the island charging energy E
C

. (a) When the
valve is open (E

J

� E
C

) an applied magnetic field B drives
the wire into a topological superconducting state hosting Ma-
jorana zero modes �1,2. The system thus supports degenerate
ground states with even and odd fermion parity. (b) Closing
the valve (E

J

⌧ E
C

) restores charging energy and converts
these parity eigenstates into non-degenerate states with island
charges Q

o

and Q
e

as shown on the right. The gate-controlled
‘parity-to-charge conversion’ illustrated here is central to the
manipulation and readout schemes developed in this paper.

When the valve is ‘open’—i.e., one or more modes in
the barrier provide su�cient coupling that the junction’s
Josephson energy dominates over charging energy—the
island hosts a pair of Majorana zero modes �

1,2

that
encode a topological degeneracy between ground states
with even and odd fermion parity; see Fig. 1(a). Clos-
ing the valve by depleting the barrier renders charging
energy dominant over the Josephson energy, lifting the
degeneracy of parity eigenstates by converting them into
charge states of the island, as sketched in Fig. 1(b). We
note that this scheme closely resembles the ‘Coulomb-
assisted’ Majorana manipulation approaches described in
Refs. 32, 33, and 41 (see also Ref. 42), but uses depletion
gates rather than fluxes to control the ratio of Josephson
coupling to charging energy.

Gate tuning of Josephson and Coulomb energies is par-
ticularly useful when integrated into devices with multi-
ple islands. For instance, this capability allows Majorana
zero modes to be initialized by evolving known charge
states into degenerate parity eigenstates [e.g., smoothly
passing from Fig. 1(b) to (a)], alter the length of a topo-
logical superconductor by selectively opening and closing
valves connecting adjacent islands, introduce rotations
within the ground-state subspace, and braid Majorana
modes in network geometries. Converting parity eigen-
states back into charge states—an adaptation of ‘spin-to-
charge conversion’ used in spin qubits—further enables
readout of the state formed by Majorana modes.

We discuss three specific experiments that use these
capabilities:

Fusion-rule detection (Sec. III). A fundamental

property of non-Abelian anyons is their behavior under
fusion, which describes how these emergent particles co-
alesce. In our setups, the topological superconductors’
endpoints, where Majorana zero modes localize, essen-
tially realize ‘Ising’ non-Abelian anyons. Ising anyons
obey a particularly simple fusion rule: pairs can either
annihilate or combine into a fermion  . These two ‘fu-
sion channels’ correspond to the ordinary fermionic state
arising from a pair of hybridized Majorana modes being
empty or filled. The presence of multiple fusion chan-
nels intimately relates to non-Abelian statistics, and in
fact is commonly used to define non-Abelian anyons in
the first place. Detecting this foundational property has
nevertheless received very little attention.

We introduce two experimental methods for probing
Ising-anyon fusion rules, both invoking a relatively sim-
ple single-wire geometry with two superconducting is-
lands and three gate-tunable valves. The first method
operates the valves to nucleate a set of anyons and then
restore charging energy to fuse them in a manner that
accesses the fusion channels with known probabilities;
charge sensors detect the fusion outcomes. The sec-
ond method converts the microscopic di↵erence between
the two fusion channels into a macroscopic current, sim-
plifying the setup by eliminating charge sensing. This
Majorana-mediated charge pump cyclically creates and
fuses anyons, shuttling a Cooper pair across the system
whenever the  channel appears. As a bonus, this setup
permits time-domain measurements of device parameters
such as quasiparticle poisoning times, excitation gaps,
and residual Majorana-zero-mode splittings.

Topological qubit validation (Sec. IV). A single-
wire, two-island geometry supporting four Majorana
modes realizes a prototype topological qubit. The two
fixed-parity degenerate ground states available in such a
setup form the logical |0i and |1i states. How can one
validate the topological nature of this qubit (assuming
the usual conditions required for topological protection
are maintained)? For instance, what set of measurements
will distinguish a Majorana qubit from a similar setup in
which degenerate ground states instead arise from acci-
dental zero-energy Andreev bound states? We will show
that the di↵erence can be found in the coherence times
and oscillation frequency, !

0

, of the qubit. In particular,
relaxation and dephasing times, T

1

and T
2

, as well as !
0

,
exhibit exponential dependence on the (experimentally
tunable) splitting of ground states encoded by Majorana
modes, leading to scaling relations among these quanti-
ties that can be used to identify topological protection.
Topological qubit validation along these lines uses the
same setup as fusion-rule detection, together with the
ability to implement qubit rotations via pulsing of gate-
tunable valves.

Non-Abelian statistics (Sec. V). Moving to
branched geometries, we present a new approach to
demonstrating non-Abelian statistics and the associated
fault-tolerant qubit rotations in wire networks. Opera-
tionally, this approach resembles Coulomb-assisted braid-
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FIG. 1. Semiconducting wire coated with a superconducting
island and bulk superconductor that are bridged by a gate-
tunable ‘valve’. The valve controls the carrier density in the
barrier region and thereby modulates the ratio of Josephson
energy E
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to the island charging energy E
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. (a) When the
valve is open (E
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� E
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) an applied magnetic field B drives
the wire into a topological superconducting state hosting Ma-
jorana zero modes �1,2. The system thus supports degenerate
ground states with even and odd fermion parity. (b) Closing
the valve (E

J

⌧ E
C

) restores charging energy and converts
these parity eigenstates into non-degenerate states with island
charges Q

o

and Q
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as shown on the right. The gate-controlled
‘parity-to-charge conversion’ illustrated here is central to the
manipulation and readout schemes developed in this paper.

When the valve is ‘open’—i.e., one or more modes in
the barrier provide su�cient coupling that the junction’s
Josephson energy dominates over charging energy—the
island hosts a pair of Majorana zero modes �

1,2

that
encode a topological degeneracy between ground states
with even and odd fermion parity; see Fig. 1(a). Clos-
ing the valve by depleting the barrier renders charging
energy dominant over the Josephson energy, lifting the
degeneracy of parity eigenstates by converting them into
charge states of the island, as sketched in Fig. 1(b). We
note that this scheme closely resembles the ‘Coulomb-
assisted’ Majorana manipulation approaches described in
Refs. 32, 33, and 41 (see also Ref. 42), but uses depletion
gates rather than fluxes to control the ratio of Josephson
coupling to charging energy.

Gate tuning of Josephson and Coulomb energies is par-
ticularly useful when integrated into devices with multi-
ple islands. For instance, this capability allows Majorana
zero modes to be initialized by evolving known charge
states into degenerate parity eigenstates [e.g., smoothly
passing from Fig. 1(b) to (a)], alter the length of a topo-
logical superconductor by selectively opening and closing
valves connecting adjacent islands, introduce rotations
within the ground-state subspace, and braid Majorana
modes in network geometries. Converting parity eigen-
states back into charge states—an adaptation of ‘spin-to-
charge conversion’ used in spin qubits—further enables
readout of the state formed by Majorana modes.

We discuss three specific experiments that use these
capabilities:

Fusion-rule detection (Sec. III). A fundamental

property of non-Abelian anyons is their behavior under
fusion, which describes how these emergent particles co-
alesce. In our setups, the topological superconductors’
endpoints, where Majorana zero modes localize, essen-
tially realize ‘Ising’ non-Abelian anyons. Ising anyons
obey a particularly simple fusion rule: pairs can either
annihilate or combine into a fermion  . These two ‘fu-
sion channels’ correspond to the ordinary fermionic state
arising from a pair of hybridized Majorana modes being
empty or filled. The presence of multiple fusion chan-
nels intimately relates to non-Abelian statistics, and in
fact is commonly used to define non-Abelian anyons in
the first place. Detecting this foundational property has
nevertheless received very little attention.

We introduce two experimental methods for probing
Ising-anyon fusion rules, both invoking a relatively sim-
ple single-wire geometry with two superconducting is-
lands and three gate-tunable valves. The first method
operates the valves to nucleate a set of anyons and then
restore charging energy to fuse them in a manner that
accesses the fusion channels with known probabilities;
charge sensors detect the fusion outcomes. The sec-
ond method converts the microscopic di↵erence between
the two fusion channels into a macroscopic current, sim-
plifying the setup by eliminating charge sensing. This
Majorana-mediated charge pump cyclically creates and
fuses anyons, shuttling a Cooper pair across the system
whenever the  channel appears. As a bonus, this setup
permits time-domain measurements of device parameters
such as quasiparticle poisoning times, excitation gaps,
and residual Majorana-zero-mode splittings.

Topological qubit validation (Sec. IV). A single-
wire, two-island geometry supporting four Majorana
modes realizes a prototype topological qubit. The two
fixed-parity degenerate ground states available in such a
setup form the logical |0i and |1i states. How can one
validate the topological nature of this qubit (assuming
the usual conditions required for topological protection
are maintained)? For instance, what set of measurements
will distinguish a Majorana qubit from a similar setup in
which degenerate ground states instead arise from acci-
dental zero-energy Andreev bound states? We will show
that the di↵erence can be found in the coherence times
and oscillation frequency, !

0

, of the qubit. In particular,
relaxation and dephasing times, T

1

and T
2

, as well as !
0

,
exhibit exponential dependence on the (experimentally
tunable) splitting of ground states encoded by Majorana
modes, leading to scaling relations among these quanti-
ties that can be used to identify topological protection.
Topological qubit validation along these lines uses the
same setup as fusion-rule detection, together with the
ability to implement qubit rotations via pulsing of gate-
tunable valves.

Non-Abelian statistics (Sec. V). Moving to
branched geometries, we present a new approach to
demonstrating non-Abelian statistics and the associated
fault-tolerant qubit rotations in wire networks. Opera-
tionally, this approach resembles Coulomb-assisted braid-
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FIG. 1. Semiconducting wire coated with a superconducting
island and bulk superconductor that are bridged by a gate-
tunable ‘valve’. The valve controls the carrier density in the
barrier region and thereby modulates the ratio of Josephson
energy E

J

to the island charging energy E
C

. (a) When the
valve is open (E

J

� E
C

) an applied magnetic field B drives
the wire into a topological superconducting state hosting Ma-
jorana zero modes �1,2. The system thus supports degenerate
ground states with even and odd fermion parity. (b) Closing
the valve (E

J

⌧ E
C

) restores charging energy and converts
these parity eigenstates into non-degenerate states with island
charges Q

o

and Q
e

as shown on the right. The gate-controlled
‘parity-to-charge conversion’ illustrated here is central to the
manipulation and readout schemes developed in this paper.

When the valve is ‘open’—i.e., one or more modes in
the barrier provide su�cient coupling that the junction’s
Josephson energy dominates over charging energy—the
island hosts a pair of Majorana zero modes �

1,2

that
encode a topological degeneracy between ground states
with even and odd fermion parity; see Fig. 1(a). Clos-
ing the valve by depleting the barrier renders charging
energy dominant over the Josephson energy, lifting the
degeneracy of parity eigenstates by converting them into
charge states of the island, as sketched in Fig. 1(b). We
note that this scheme closely resembles the ‘Coulomb-
assisted’ Majorana manipulation approaches described in
Refs. 32, 33, and 41 (see also Ref. 42), but uses depletion
gates rather than fluxes to control the ratio of Josephson
coupling to charging energy.

Gate tuning of Josephson and Coulomb energies is par-
ticularly useful when integrated into devices with multi-
ple islands. For instance, this capability allows Majorana
zero modes to be initialized by evolving known charge
states into degenerate parity eigenstates [e.g., smoothly
passing from Fig. 1(b) to (a)], alter the length of a topo-
logical superconductor by selectively opening and closing
valves connecting adjacent islands, introduce rotations
within the ground-state subspace, and braid Majorana
modes in network geometries. Converting parity eigen-
states back into charge states—an adaptation of ‘spin-to-
charge conversion’ used in spin qubits—further enables
readout of the state formed by Majorana modes.

We discuss three specific experiments that use these
capabilities:

Fusion-rule detection (Sec. III). A fundamental

property of non-Abelian anyons is their behavior under
fusion, which describes how these emergent particles co-
alesce. In our setups, the topological superconductors’
endpoints, where Majorana zero modes localize, essen-
tially realize ‘Ising’ non-Abelian anyons. Ising anyons
obey a particularly simple fusion rule: pairs can either
annihilate or combine into a fermion  . These two ‘fu-
sion channels’ correspond to the ordinary fermionic state
arising from a pair of hybridized Majorana modes being
empty or filled. The presence of multiple fusion chan-
nels intimately relates to non-Abelian statistics, and in
fact is commonly used to define non-Abelian anyons in
the first place. Detecting this foundational property has
nevertheless received very little attention.

We introduce two experimental methods for probing
Ising-anyon fusion rules, both invoking a relatively sim-
ple single-wire geometry with two superconducting is-
lands and three gate-tunable valves. The first method
operates the valves to nucleate a set of anyons and then
restore charging energy to fuse them in a manner that
accesses the fusion channels with known probabilities;
charge sensors detect the fusion outcomes. The sec-
ond method converts the microscopic di↵erence between
the two fusion channels into a macroscopic current, sim-
plifying the setup by eliminating charge sensing. This
Majorana-mediated charge pump cyclically creates and
fuses anyons, shuttling a Cooper pair across the system
whenever the  channel appears. As a bonus, this setup
permits time-domain measurements of device parameters
such as quasiparticle poisoning times, excitation gaps,
and residual Majorana-zero-mode splittings.

Topological qubit validation (Sec. IV). A single-
wire, two-island geometry supporting four Majorana
modes realizes a prototype topological qubit. The two
fixed-parity degenerate ground states available in such a
setup form the logical |0i and |1i states. How can one
validate the topological nature of this qubit (assuming
the usual conditions required for topological protection
are maintained)? For instance, what set of measurements
will distinguish a Majorana qubit from a similar setup in
which degenerate ground states instead arise from acci-
dental zero-energy Andreev bound states? We will show
that the di↵erence can be found in the coherence times
and oscillation frequency, !

0

, of the qubit. In particular,
relaxation and dephasing times, T

1

and T
2

, as well as !
0

,
exhibit exponential dependence on the (experimentally
tunable) splitting of ground states encoded by Majorana
modes, leading to scaling relations among these quanti-
ties that can be used to identify topological protection.
Topological qubit validation along these lines uses the
same setup as fusion-rule detection, together with the
ability to implement qubit rotations via pulsing of gate-
tunable valves.

Non-Abelian statistics (Sec. V). Moving to
branched geometries, we present a new approach to
demonstrating non-Abelian statistics and the associated
fault-tolerant qubit rotations in wire networks. Opera-
tionally, this approach resembles Coulomb-assisted braid-
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Transmon as a charge parity sensor 

 
 
 

• Readout via parity to charge conversion by changing EJ/EC 

• Operation + readout must be carried out before quasiparticle poisoning 
disturbs parity 

 
•  Superconducting circuit elements must survive B > 0.5 T Majorana conditions  
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