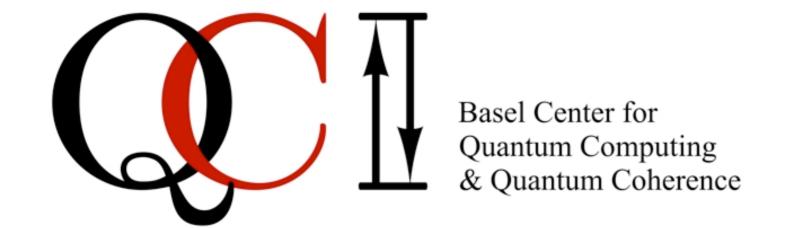


Classical and quantum synchronization

Christoph Bruder - University of Basel



different "agents" act synchronously, at the same time:

different "agents" act synchronously, at the same time:

audience leaves for the coffee break

different "agents" act synchronously, at the same time:

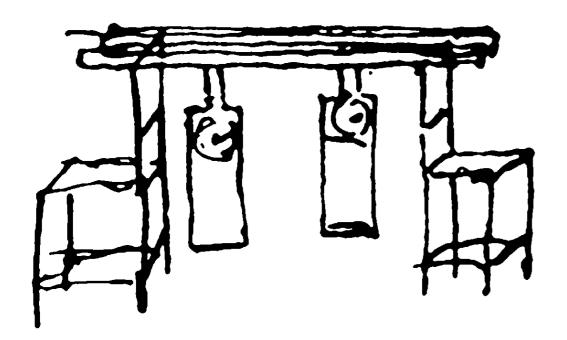
- audience leaves for the coffee break
- rowing (e.g. coxed eight)

different "agents" act synchronously, at the same time:

- audience leaves for the coffee break
- rowing (e.g. coxed eight)

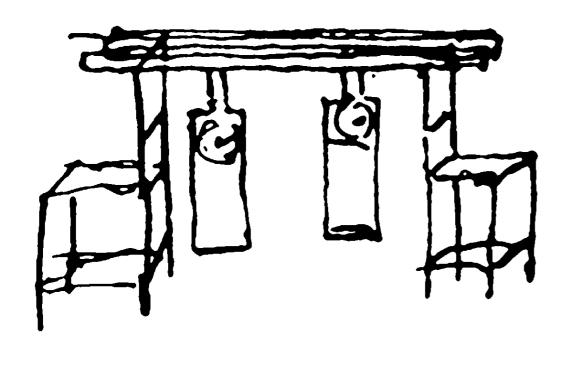
control by external "clock"

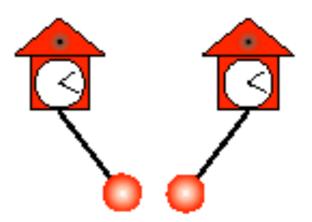
Huygens' observation (1665): two pendulum clocks fastened to the same beam will synchronize (anti-phase)



A. Pikovsky, M. Rosenblum, and J. Kurths
Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, New York, 2001)

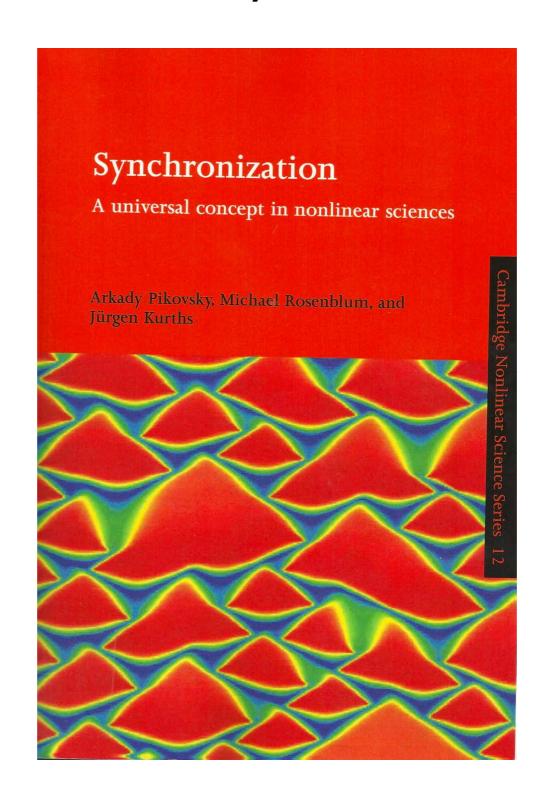
Huygens' observation (1665): two pendulum clocks fastened to the same beam will synchronize (anti-phase)





A. Pikovsky, M. Rosenblum, and J. Kurths
Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, New York, 2001)

nice introduction to classical synchronization



- rhythmic applause in a large audience
- heart beat (due to synchronization of 1000's of cells)
- synchronous flashing of fireflies

global outline

- Lecture I: classical synchronization
- Lecture II: quantum synchronization
- Lecture III: topics in quantum synchronization

lecture I: classical synchronization

- synchronization of a self-oscillator by external forcing
- two coupled oscillators
- ensembles of oscillators: Kuramoto model
- realization in a one-dimensional Josephson array

definition of self-oscillator

self-oscillator or self-sustained (limit-cycle) oscillator

- driven into oscillation by some energy source
- maintains stable oscillatory motion when unperturbed or weakly perturbed
- intrinsic natural frequency ω_0

definition of self-oscillator

self-oscillator or self-sustained (limit-cycle) oscillator

- driven into oscillation by some energy source
- maintains stable oscillatory motion when unperturbed or weakly perturbed
- intrinsic natural frequency ω_0

examples:

- (i) pendulum clock
- (ii) van der Pol oscillator $\ddot{x} + (-\gamma_1 + \gamma_2 x^2)\dot{x} + \omega_0^2 x = 0$

synchronization problem

given two (or more) self-oscillators with (slightly) different frequencies: $\omega_0, \omega_0', ...$ will they agree on ONE frequency if coupled?

synchronization problem

given two (or more) self-oscillators with (slightly) different frequencies: $\omega_0, \omega_0', ...$ will they agree on ONE frequency if coupled?

let's start with an easier problem:

will one self-oscillator frequency-lock to an external harmonic drive of frequency $\omega_d \neq \omega_0$

synchronization problem

given two (or more) self-oscillators with (slightly) different frequencies: $\omega_0, \omega_0', ...$ will they agree on ONE frequency if coupled?

let's start with an easier problem:

will one self-oscillator frequency-lock to an external harmonic drive of frequency $\omega_d \neq \omega_0$

= synchronization by external forcing

linear oscillators

NOTE:

driven linear damped harmonic oscillator

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \Omega \cos(\omega_d t)$$

solution: damped eigenmodes + $A\cos(\omega_d t)$

linear oscillators

NOTE:

driven linear damped harmonic oscillator

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \Omega \cos(\omega_d t)$$

solution: damped eigenmodes + $A\cos(\omega_d t)$

will always adjust to an external drive frequency (after a transient) - this is NOT synchronization

linear oscillators

NOTE:

driven linear damped harmonic oscillator

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \Omega \cos(\omega_d t)$$

solution: damped eigenmodes + $A\cos(\omega_d t)$

will always adjust to an external drive frequency (after a transient) - this is NOT synchronization

the same applies to eigenmodes of coupled linear harmonic oscillators

non-linearity is crucial for synchronization

phase $\phi(t)$ parametrizes motion along one cycle of the oscillator

amplitude is assumed to be constant

undisturbed dynamics:

$$\frac{d\phi(t)}{dt} = \dot{\phi}(t) = \omega_0$$

phase $\phi(t)$ parametrizes motion along one cycle of the oscillator

amplitude is assumed to be constant

undisturbed dynamics:

$$\frac{d\phi(t)}{dt} = \dot{\phi}(t) = \omega_0$$

always possible by re-parametrization:

$$\tilde{\phi}(t)$$
 non-uniform \Rightarrow

$$\phi(t) = \omega_0 \int_0^{\tilde{\phi}} d\tilde{\phi} \left(\frac{d\tilde{\phi}}{dt}\right)^{-1} \quad \text{uniform}$$

drive by a periodic force of frequency $\omega_d \approx \omega_0$ and amplitude ϵ :

$$\dot{\phi}(t) = \omega_0 + \epsilon Q(\phi, \omega_d t)$$

where Q is 2π -periodic in both arguments

drive by a periodic force of frequency $\omega_d \approx \omega_0$ and amplitude ϵ :

$$\dot{\phi}(t) = \omega_0 + \epsilon Q(\phi, \omega_d t)$$

where Q is 2π -periodic in both arguments

define deviation

$$\Delta \phi = \phi - \omega_d t$$

drive by a periodic force of frequency $\omega_d \approx \omega_0$ and amplitude ϵ :

$$\dot{\phi}(t) = \omega_0 + \epsilon Q(\phi, \omega_d t)$$

where Q is 2π -periodic in both arguments

define deviation

$$\Delta \phi = \phi - \omega_d t$$

Fourier-expansion of Q and averaging $(\rightarrow \text{ vanishing of rapidly oscillating terms})$ leads to

$$rac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon q(\Delta\phi)$$
 Adler 1946

$$\frac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon q(\Delta\phi)$$

q is 2π -periodic

simplest choice: $q(\Delta\phi) = \sin(\Delta\phi)$

$$\frac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon \sin(\Delta\phi)$$

$$\frac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon q(\Delta\phi)$$

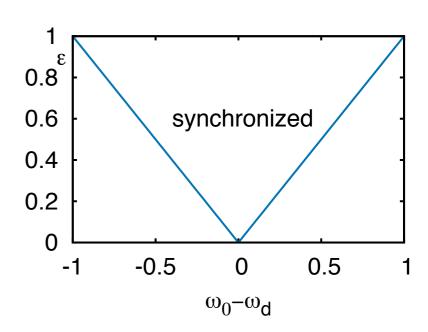
q is 2π -periodic

simplest choice: $q(\Delta\phi) = \sin(\Delta\phi)$

$$\frac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon \sin(\Delta\phi)$$

synchronization, i.e., $\frac{d\Delta\phi(t)}{dt}=0$

possible for $|\frac{\epsilon}{\omega_0 - \omega_d}| > 1$



Adler plot of observed frequency

 $\omega_{obs} = \langle rac{d\phi}{dt}
angle$ (time average); differs in general from both ω_0 and ω_d $(\omega_{\rm obs} - \omega_{\rm d})/\epsilon$ 2 synchronization $\omega_{obs} = \omega_d$ 0 entrainment $\omega_{obs} \neq \omega_0, \omega_d$ -2 $(\omega_0 - \omega_d)/\epsilon$

side remark

Adler equation
$$\frac{d\Delta\phi(t)}{dt} = \omega_0 - \omega_d + \epsilon\sin(\Delta\phi)$$

appears in many areas of physics: e.g.

superconductivity (Shapiro steps)

quantum optics (ring-laser gyros)

Josephson relations $I = I_c \sin \phi$

$$I = I_c \sin \phi$$

$$\frac{d\phi}{dt} = \frac{2e}{\hbar}V$$

$$I_c = \frac{2e}{\hbar}E_J$$

$$E_{\mathbf{J}}$$

Josephson relations $I = I_c \sin \phi$

$$I = I_c \sin \phi$$

$$\frac{d\phi}{dt} = \frac{2e}{\hbar}V$$

$$I_c = \frac{2e}{\hbar}E_J$$

$$E_{J}$$

RSJ model

$$I = I_c \sin \phi + \frac{\hbar}{2eR} \frac{d\phi}{dt} + \frac{C\hbar}{2e} \frac{d^2\phi}{dt^2}$$

$$I = I_c \sin \phi + \frac{\hbar}{2eR} \frac{d\phi}{dt} + \frac{C\hbar}{2e} \frac{d^2\phi}{dt^2}$$

classical junction: $C \rightarrow 0$

$$\frac{d\phi}{dt} = \frac{2e}{\hbar}RI - \frac{2e}{\hbar}RI_c\sin\phi$$

$$I = I_c \sin \phi + \frac{\hbar}{2eR} \frac{d\phi}{dt} + \frac{C\hbar}{2e} \frac{d^2\phi}{dt^2}$$

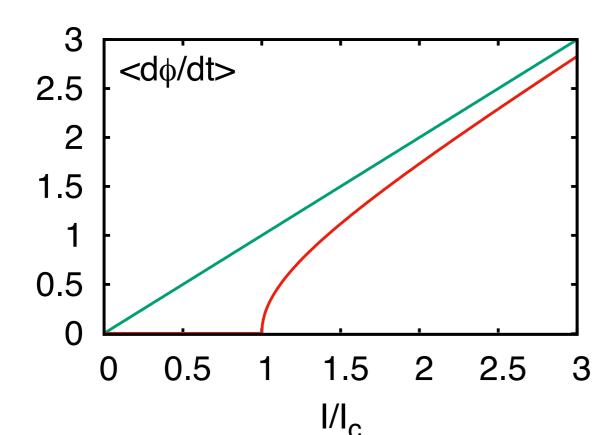
classical junction: $C \rightarrow 0$

$$\frac{d\phi}{dt} = \frac{2e}{\hbar}RI - \frac{2e}{\hbar}RI_c\sin\phi \quad \text{Adler equation!}$$

$$I = I_c \sin \phi + \frac{\hbar}{2eR} \frac{d\phi}{dt} + \frac{C\hbar}{2e} \frac{d^2\phi}{dt^2}$$

classical junction: $C \rightarrow 0$

$$\frac{d\phi}{dt} = \frac{2e}{\hbar}RI - \frac{2e}{\hbar}RI_c\sin\phi \quad \text{Adler equation!}$$



"synchronized" state with

$$\langle \frac{d\phi}{dt} \rangle = \frac{2e}{\hbar} \langle V \rangle = 0$$

for "detuning" $I/I_c < 1$

 strictly speaking, J junction is a rotator (and not a self-sustained oscillator)

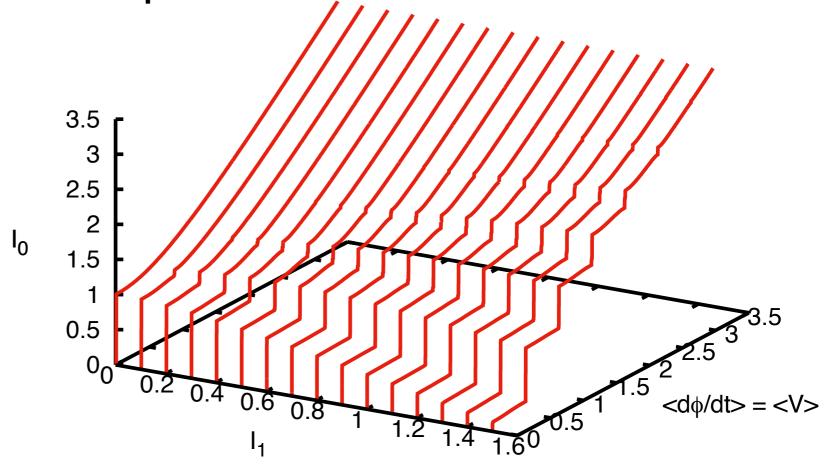
- strictly speaking, J junction is a rotator (and not a self-sustained oscillator)
- can be synchronized by a periodic external force (Shapiro steps) or to another J junction

Shapiro steps

current-biased Josephson junction + harmonic current bias:

$$I_0 + I_1 \sin \omega_d t = \frac{\hbar}{2eR} \frac{d\phi}{dt} + I_c \sin \phi$$

additional synchronization plateaus



2 oscillators, no external forcing

undistorted frequencies ω_1,ω_2

weak interaction affects only the phases ϕ_1,ϕ_2

$$\dot{\phi}_1(t) = \omega_1 + \epsilon Q_1(\phi_1, \phi_2)$$

$$\dot{\phi}_2(t) = \omega_2 + \epsilon Q_2(\phi_2, \phi_1)$$

Fourier expansion, averaging to get rid of rapidly oscillating terms leads to

$$\frac{d\Delta\phi(t)}{dt} = \omega_1 - \omega_2 + \epsilon q(\Delta\phi)$$

Adler equation!

2 oscillators, no external forcing

the two oscillators will lock in on a common frequency between ω_1 and ω_2

→ spontaneous synchronization

N coupled phase oscillators $\phi_i(t)$, random frequencies ω_i described by probability density $g(\omega)$

$$\dot{\phi}_i = \omega_i + \sum_{j=1}^N K_{ij} \sin(\phi_j - \phi_i), \qquad i = 1, \dots, N$$

Kuramoto model (1975), solvable for infinite-range coupling

$$K_{ij} = \epsilon/N > 0$$

N coupled phase oscillators $\phi_i(t)$, random frequencies ω_i described by probability density $g(\omega)$

$$\dot{\phi}_i = \omega_i + \sum_{j=1}^N K_{ij} \sin(\phi_j - \phi_i), \qquad i = 1, \dots, N$$

Kuramoto model (1975), solvable for infinite-range coupling

$$K_{ij} = \epsilon/N > 0$$

non-equilibrium phase transition to a synchronized state as a function of ϵ

degree of synchronicity described by order parameter

$$re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j}$$

degree of synchronicity described by order parameter

$$re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j}$$

 $\psi(t)$ is the average phase

transition to $r \neq 0 \rightarrow$ synchronization

 $0 \le r(t) \le 1$ measures the coherence of the ensemble

degree of synchronicity described by order parameter

$$re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j}$$

 $\psi(t)$ is the average phase

transition to $r \neq 0 \rightarrow$ synchronization

 $0 \le r(t) \le 1$ measures the coherence of the ensemble

substituted back in the Kuramoto equation gives

$$\dot{\phi}_i = \omega_i + \epsilon r \sin(\psi - \phi_i), \qquad i = 1, \dots, N$$

ightharpoonup each oscillator couples to the common average phase $\,\psi(t)$

partial coherence

$$\dot{\phi}_i = \omega_i + \epsilon r \sin(\psi - \phi_i), \qquad i = 1, \dots, N$$

interpretation of 0 < r < 1:

typical oscillator running with velocity $\omega - \epsilon r \sin(\phi - \psi)$ will become stably locked at an angle such that

$$\epsilon r \sin(\phi - \psi) = \omega$$
 $-\pi/2 \le \phi - \psi \le \pi/2$

oscillators with frequencies $|\omega|>\epsilon r$ cannot be locked

partial coherence

$$\dot{\phi}_i = \omega_i + \epsilon r \sin(\psi - \phi_i), \qquad i = 1, \dots, N$$

interpretation of 0 < r < 1:

typical oscillator running with velocity $\omega - \epsilon r \sin(\phi - \psi)$ will become stably locked at an angle such that

$$\epsilon r \sin(\phi - \psi) = \omega$$
 $-\pi/2 \le \phi - \psi \le \pi/2$

oscillators with frequencies $|\omega|>\epsilon r$ cannot be locked

- → three groups:
- (i) synchronized
- (ii) unsynchronized, velocity $>\psi$
- (iii) unsynchronized, velocity $\ <\dot{\psi}$

$$g(\omega) = g(-\omega)$$

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)

for $N \to \infty$, transition from incoherent state (r=0) to partially coherent (r>0) state occurs at

$$\epsilon_c = \frac{2}{\pi g(\omega = 0)}$$

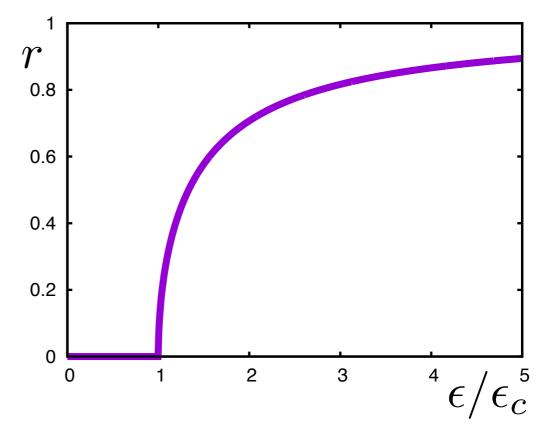
$$g(\omega) = g(-\omega)$$

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)

for $N\to\infty$, transition from incoherent state (r=0) to partially coherent (r>0) state occurs at

$$\epsilon_c = \frac{2}{\pi g(\omega = 0)}$$

$$r \sim \sqrt{\frac{-16(\epsilon - \epsilon_c)}{\pi \epsilon_c^4 g''(0)}}$$



$$g(\omega) = g(-\omega)$$

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)

for $N o \infty$, transition from incoherent state (r=0) to partially coherent (r > 0) state occurs at

$$\epsilon_c = \frac{2}{\pi g(\omega = 0)}$$

$$r \sim \sqrt{\frac{-16(\epsilon - \epsilon_c)}{\pi \epsilon_c^4 g''(0)}}$$

$$g(\omega) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + \omega^2}$$

$$g(\omega) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + \omega^2} \qquad r = \sqrt{1 - \frac{\epsilon_c}{\epsilon}} \quad \text{for} \quad \epsilon > \epsilon_c = 2\gamma$$

$$g(\omega) = g(-\omega)$$

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)

for $N \to \infty$, transition from incoherent state (r=0) to partially coherent (r > 0) state occurs at

$$\epsilon_c = \frac{2}{\pi g(\omega = 0)}$$

$$r \sim \sqrt{\frac{-16(\epsilon - \epsilon_c)}{\pi \epsilon_c^4 g''(0)}}$$

$$g(\omega) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + \omega^2}$$

$$g(\omega) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + \omega^2} \qquad r = \sqrt{1 - \frac{\epsilon_c}{\epsilon}} \quad \text{ for } \quad \epsilon > \epsilon_c = 2\gamma$$

exact solution - pretty amazing!

simulation with N=900 oscillators

example:
$$\gamma = 1$$

example:
$$\gamma=1$$

$$g(\omega)=\frac{1}{\pi}\frac{1}{1+\omega^2}$$

synchronization transition at $\epsilon_c=2$

$$\epsilon_c = 2$$

$$r = \sqrt{1 - \frac{\epsilon_c}{\epsilon}} \approx 0.71$$
 for $\epsilon = 4$

simulation with N=900 oscillators

example:
$$\gamma = 1$$

example:
$$\gamma=1$$

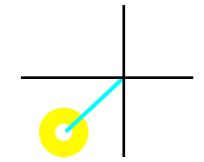
$$g(\omega)=\frac{1}{\pi}\frac{1}{1+\omega^2}$$

synchronization transition at $\epsilon_c=2$

$$\epsilon_c = 2$$

$$r = \sqrt{1 - \frac{\epsilon_c}{\epsilon}} \approx 0.71$$
 for $\epsilon = 4$

nice simulation program: Synched by Per Sebastian Skardal "K" corresponds to ϵ



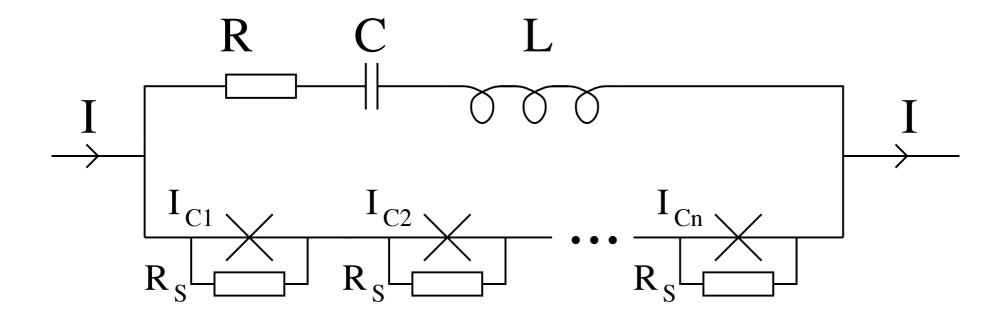
gives amplitude and phase of the order parameter

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

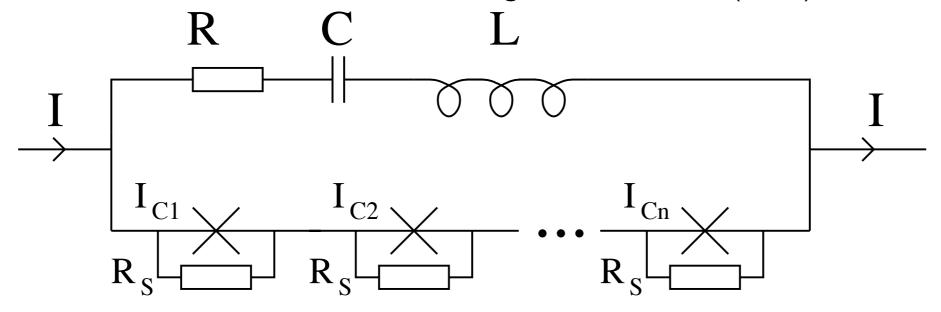
uncoupled Josephson junctions = rotators with $\omega_i = \frac{2e}{\hbar} R_S \sqrt{I^2 - I_{Ci}^2}$

global coupling by RCL branch

⇒ natural realization of the Kuramoto model

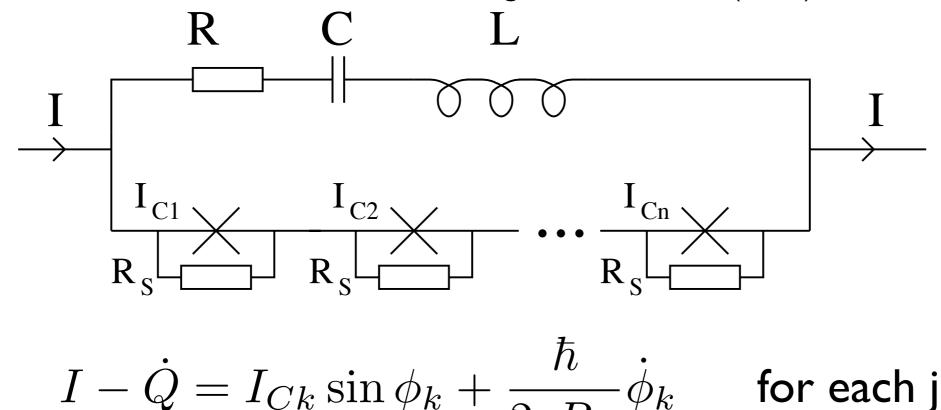


K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)



$$I-\dot{Q}=I_{Ck}\sin\phi_k+rac{\hbar}{2eR_S}\dot{\phi}_k$$
 for each junction $L\ddot{Q}+R\dot{Q}+rac{Q}{C}=rac{\hbar}{2e}\sum_{l}\dot{\phi}_k$

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)



$$I-\dot{Q}=I_{Ck}\sin\phi_k+rac{\hbar}{2eR_S}\dot{\phi}_k$$
 for each junction $L\ddot{Q}+R\dot{Q}+rac{Q}{C}=rac{\hbar}{2e}\sum_{l}\dot{\phi}_k$

uniformly rotating phases θ_k in the uncoupled case $\dot{Q}=0$

$$\frac{d\theta_k}{\omega_k} = dt = \frac{d\phi_k}{(2eR_S/\hbar)(I - I_{Ck}\sin\phi_k)}$$

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

combined with
$$I-\dot{Q}=I_{Ck}\sin\phi_k+rac{\hbar}{2eR_S}\dot{\phi}_k$$
 yields $\dot{\theta}_k=\omega_k-rac{\omega_k\dot{Q}}{I^2-I_{Ck}^2}(I-I_{Ck}\cos\theta_k)$

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

combined with
$$I-\dot{Q}=I_{Ck}\sin\phi_k+rac{\hbar}{2eR_S}\dot{\phi}_k$$
 yields $\dot{\theta}_k=\omega_k-rac{\omega_k\dot{Q}}{I^2-I_{Ck}^2}(I-I_{Ck}\cos\theta_k)$

first-order averaging ⇒

$$\dot{\theta}_k = \omega_k - \frac{K}{N} \sum_{j}^{N} \sin(\theta_k - \theta_j + \alpha)$$
 Kuramoto!

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

combined with
$$I-\dot{Q}=I_{Ck}\sin\phi_k+rac{\hbar}{2eR_S}\dot{\phi}_k$$
 yields $\dot{\theta}_k=\omega_k-rac{\omega_k\dot{Q}}{I^2-I_{Ck}^2}(I-I_{Ck}\cos\theta_k)$

first-order averaging ⇒

$$\dot{\theta}_k = \omega_k - \frac{K}{N} \sum_j^N \sin(\theta_k - \theta_j + \alpha)$$
 Kuramoto!

$$K = \frac{NR_S\bar{\omega}(2eR_SI/\hbar - \bar{\omega})}{[(L\bar{\omega}^2 - 1/C)^2 + \bar{\omega}^2(R + NR_S)^2]^{1/2}}$$

$$\cos \alpha = \frac{L\bar{\omega}^2 - 1/C}{[(L\bar{\omega}^2 - 1/C)^2 + \bar{\omega}^2(R + NR_S)^2]^{1/2}}$$

quantum synchronization

so far only classical non-linear systems

synchronization in quantum systems:

- experimental situation?
- does it exist at all?
- how to quantify and measure it?
- relation to other measures of `quantumness' (entanglement, mutual information, ...)

conclusion

- classical synchronization is well-studied,
- simplest model: one self-oscillator + external forcing
 - Adler equation $\frac{d\Delta\phi(t)}{dt} = \omega_0 \omega_d + \epsilon\sin(\Delta\phi)$
- frequency locking if detuning < drive strength
- two oscillators lock if detuning < coupling
- synchronization (phase) transition in ensembles of mutually coupled self-oscillators: Kuramoto model

appendix