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synchronization: synchronized events

different “agents” act synchronously, at the same time:

e audience leaves for the coffee break

* rowing (e.g. coxed eight)

control by external “clock”
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spontaneous synchronization

nice introduction to classical synchronization

Synchronization

A universal concept in nonlinear sciences




spontaneous synchronization

* rhythmic applause in a large audience
* heart beat (due to synchronization of 1000’s of cells)

* synchronous flashing of fireflies



global outline

* Lecture l: classical synchronization
* Lecture ll: quantum synchronization

e Lecture lll: topics in quantum synchronization



lecture |: classical synchronization

synchronization of a self-oscillator by external forcing
two coupled oscillators
ensembles of oscillators: Kuramoto model

realization in a one-dimensional Josephson array



definition of self-oscillator

self-oscillator or self-sustained (limit-cycle) oscillator

* driven into oscillation by some energy source

* maintains stable oscillatory motion when unperturbed
or weakly perturbed

*intrinsic natural frequency wy



definition of self-oscillator

self-oscillator or self-sustained (limit-cycle) oscillator

* driven into oscillation by some energy source

* maintains stable oscillatory motion when unperturbed
or weakly perturbed

*intrinsic natural frequency wy

examples:
(i) pendulum clock
(i) van der Pol oscillator & + (—v1 + Yex*)x + wix = 0




synchronization problem
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frequencies: wp, Wy, ...
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synchronization problem

given two (or more) self-oscillators with (slightly) different
frequencies: wp, Wy, ...

will they agree on ONE frequency if coupled!?

let’s start with an easier problem:

will one self-oscillator frequency-lock to an external
harmonic drive of frequency wy # wy

= synchronization by external forcing
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linear oscillators

NOTE:
driven linear damped harmonic oscillator

i 4 vE + wix = Q cos(wgt)

solution: damped eigenmodes + A cos(wgt)

will always adjust to an external drive frequency
(after a transient) - this is NOT synchronization

the same applies to eigenmodes of coupled linear
harmonic oscillators

non-linearity is crucial for synchronization
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¢(t) parametrizes motion along one cycle of the
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amplitude is assumed to be constant
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synchronization by external forcing

¢(t) parametrizes motion along one cycle of the
oscillator

amplitude is assumed to be constant

de(t)

) =w

undisturbed dynamics:

always possible by re-parametrization:
¢(t) non-uniform =

~1
o(t) = wO/O d¢( ¢) uniform
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synchronization by external forcing

drive by a periodic force of frequency wy; ~ wg and
amplitude € :

qb(t) = wp + €Q(¢, wyt)

where () is 2m-periodic in both arguments

define deviation Ap = ¢ — wgt

Fourier-expansion of () and averaging
(— vanishing of rapidly oscillating terms) leads to

dAp(t
;;( ) = wy — Wy + €q(Ap) Adler 1946




synchronization by external forcing

dAG(1)
dt
q is 27 -periodic

= wp — wq + €q(AP)

simplest choice: ¢(A¢) = sin(Ag)
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synchronization by external forcing

dAg(t)
dt
q is 27 -periodic

= wp — wq + €q(AP)

simplest choice: ¢(A¢) = sin(Ag)

=

dA@(t
o) = wy — Wy + €sin(Ag)
dt
synchronization, i.e., da¢(?)
dat
€
possible for | > 1
wWo — Wy

1

0.8
0.6 |
0.4
0.2 }

synchronized

-0.5 0 0.5

Wy—Wq




Adler plot of observed frequency

dg

Wobs = <E> (time average); differs in general from both wo
and wq

(Wops™ Wg)/e

synchronization

Wobs — Wd \

\
\

entrainment
Wobs # Wo, Wy




side remark

dAP(t)
dt

appears in many areas of physics: e.g.

Adler equation = wy — Wy + esin(Ag)

superconductivity (Shapiro steps)

quantum optics (ring-laser gyros)



current-biased Josephson junction

Josephson relations I = I.sin ¢ % _ 2_h6v

>< Ic_%EJ

E; -



current-biased Josephson junction

. . do  2e
h lat I = 1.sin R — V4
Josep s;zre ations @ — -
2e
I.=—F
E, h
RS] model
| C
I || R I
Ej
. h dp Chd*¢
I =1 | |
SIn ¢ 2eR dt ~ 2e dt?



current-biased Josephson junction

hodp  Chd®

] — Ic . I |
sin ¢ 2e R dt 2e dt>

classical junction: C' — 0

dop  2e 2e ,
i %RI r RI.sin ¢




current-biased Josephson junction

hodp  Chd®

] — Ic . I |
sin ¢ 2e R dt 2e dt>

classical junction: C' — 0

do  2e 2e
g r RI r RI.sin¢ Adler equation!




current-biased Josephson junction

hodo Ch d?¢
2R dt = 2e dt2

I =1.s8in¢ 4

classical junction: C' — 0

d 2 2

d—qtb = %RI ;RIC sin¢ Adler equation!

22  <d¢/dt> “synchronized” state with
2 | do 2e

—)=—(V) =0

| 2y = )

0.5 | for “detuning” I/I. < 1
0

0 05 1 15 2 25 3
I,



current-biased Josephson junction

* strictly speaking, ] junction is a rotator
(and not a self-sustained oscillator)



current-biased Josephson junction

* strictly speaking, ] junction is a rotator
(and not a self-sustained oscillator)

* can be synchronized by a periodic external force
(Shapiro steps) or to another | junction



Shapiro steps

current-biased Josephson junction + harmonic current bias:

h d
Iy + 17 sinwgt = ST, dq; - [.sin @

additional synchronization plateaus

3.5 r
3k
2.5
2




2 oscillators, no external forcing

undistorted frequencies w1, w2

weak interaction affects only the phases  ¢1, 2

O1(t) = w1 + €Q1(o1, P2)
@2(@ = wy + €Q2(P2, P1)

Fourier expansion, averaging to get rid of rapidly oscillating
terms leads to

dAP(t)
dat
Adler equation!

= w1 — wa + €q(Ag)



2 oscillators, no external forcing

the two oscillators will lock in on a common frequency
between w1 and wo

—)



ensembles of coupled oscillators

N coupled phase oscillators ¢;(t),
random frequencies w; described by probability density g(w)

N
bi =wi+ Y Kijsin(g; —¢;), i=1,...,N
j=1

Kuramoto model (1975),
solvable for infinite-range coupling Ki; =¢€¢/N >0



ensembles of coupled oscillators

N coupled phase oscillators ¢;(t),
random frequencies w; described by probability density g(w)

N
bi =wi+ Y Kijsin(g; —¢;), i=1,...,N
j=1

Kuramoto model (1975),
solvable for infinite-range coupling Ki; =¢€¢/N >0

non-equilibrium phase transition to a synchronized state
as a function of €
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ensembles of coupled oscillators

degree of synchronicity described by
N

reV = % Z e'¥s

g=1

1) (t) is the average phase

transition to r = 0 — synchronization

0<r(t) <1 measures the coherence of the ensemble

substituted back in the Kuramoto equation gives

éi:wi+ersin(¢—gbi), 1=1,...,N

— each oscillator couples to the common average phase )(t)



partial coherence

gﬁizwi+ersin(¢—q§i), 1=1,...,N

interpretation of 0 <r < 1:

typical oscillator running with velocity w — ersin(¢ — )
will become stably locked at an angle such that

ersin(¢ —Y) = w —m/2 < ¢p—1 < m/2

oscillators with frequencies |w| > er cannot be locked



partial coherence

gﬁizwi+ersin(¢—q§i), 1=1,...,N

interpretation of 0 <r < 1:

typical oscillator running with velocity w — ersin(¢ — )
will become stably locked at an angle such that

ersin(¢ —Y) = w —m/2 < ¢p—1 < m/2

oscillators with frequencies |w| > er cannot be locked

— three groups:
(i) synchronized
(i) unsynchronized, velocity > 1)
(iii) unsynchronized, velocity < 1)



Kuramoto’s results

g(w) = g(—w) J.A.Acebron et al., Rev. Mod. Phys. 77,317 (2005)

for N — oo, transition from incoherent state (r = 0) to
partially coherent (r > () state occurs at
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Kuramoto’s results

g(w) = g(—w) J.A.Acebron et al., Rev. Mod. Phys. 77,317 (2005)

for N — oo, transition from incoherent state (r = 0) to
partially coherent (r > () state occurs at

exact solution - pretty amazing!



simulation with N=900 oscillators

1 1
w1+ w?

example: v =1 g(w) =

synchronization transition at €, = 2

7“:\/1—6—0%0.71 for =4
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simulation with N=900 oscillators

1 1
w1+ w?

example: v =1 g(w) =

synchronization transition at €, = 2

7«:\/1—6—(3%0.71 for e—=4

€

nice simulation program: Synched by Per Sebastian Skardal

“K” corresponds to ¢

gives amplitude and phase of the order parameter

https://sites.google.com/site/persebastianskardal/software/synched


https://sites.google.com/site/persebastianskardal/software/synched
https://sites.google.com/site/persebastianskardal/software/synched

realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

uncoupled Josephson junctions e
= rotators with w; = —Rg \/12 — I,

global coupling by RCL branch
= natural realization of the Kuramoto model

R C L
I
I 000
R >
SR RN RO
< < ' <
RS RS RS




realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

R C L
I
I 000
RN >
ICI N IC2\/ ICn\/
RS RS RS
I — Q) = Igysin ¢y, ¢~ for each junction
2€RS

LQ+RQ+—= Zcbk



realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

R C L
I
I 000
RN >
ICI N IC2\/ ICn\/

RS RS RS

I — Q) = Iop sin ¢y R ¢~ for each junction
-Clus

LQ + RQ + = = Z O

uniformly rotating phases 9. in the uncoupled case Q) = 0

By ___di
Wi (2eRg/h)(I — Iy sin ¢y, )




realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

. o
combined with [ — () = I sin ¢, - ¢ Yields
. 2eR g

([ — Icfk COS Hk)

Hk:wk ]2—I%k



realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

. o
combined with [ — () = I sin ¢, - R ¢ Yields
. & S
- Wi Q)
Qk = Wk 72 —I%k ([_[Ck COSHk)
first-order averaging =
N

: K
0, = wp — ~ Z sin(f0x — 0; + «) Kuramoto!
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realization in a one-dim Josephson array

K.Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

. o
combined with [ — () = I sin ¢, - R ¢ Yields
. & S
- Wi Q
Qk = Wk 72 —I%k ([_[Ck COSHk)
first-order averaging =
. K&
0, = wp — N Z Siﬂ(@k — (9]' -+ oz) Kuramoto!
J
e — NRgsw(2eRgI/h — i)

((Lio? —1/C)2 + @2(R+ NRg)2]1/2

Lw? —1/C
((Liw? —1/C)2 4+ @2(R 4+ NRg)?]1/2

COS (¥ =



quantum synchronization

so far only classical non-linear systems

synchronization in quantum systemes:

* experimental situation!?
* does it exist at all?
* how to quantify and measure it!

* relation to other measures of "'quantumness’
(entanglement, mutual information, ...)



conclusion

classical synchronization is well-studied,

simplest model: one self-oscillator + external forcing
— Adler equation dAG(1)

dat

frequency locking if detuning < drive strength

= Wy — wq + €sin(Ag)

two oscillators lock if detuning < coupling

synchronization (phase) transition in ensembles of
mutually coupled self-oscillators: Kuramoto model



appendix



