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different “agents” act synchronously, at the same time:

• audience leaves for the coffee break

• rowing (e.g. coxed eight)

control by external “clock”
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spontaneous synchronization

nice introduction to classical synchronization



spontaneous synchronization

• rhythmic applause in a large audience

• heart beat (due to synchronization of 1000’s of cells)

• synchronous flashing of fireflies



global outline

• Lecture I: classical synchronization

• Lecture II: quantum synchronization

• Lecture III: topics in quantum synchronization



lecture I: classical synchronization

• synchronization of a self-oscillator by external forcing

• two coupled oscillators

• ensembles of oscillators: Kuramoto model

• realization in a one-dimensional Josephson array
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• driven into oscillation by some energy source
• maintains stable oscillatory motion when unperturbed
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definition of self-oscillator

self-oscillator or self-sustained (limit-cycle) oscillator

• driven into oscillation by some energy source
• maintains stable oscillatory motion when unperturbed
or weakly perturbed

• intrinsic natural frequency !0

ẍ+ (��1 + �2x
2)ẋ+ !

2
0x = 0

examples: 
(i) pendulum clock
(ii) van der Pol oscillator
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synchronization problem

given two (or more) self-oscillators with (slightly) different 
frequencies:
will they agree on ONE frequency if coupled?

let’s start with an easier problem:

will one self-oscillator frequency-lock to an external 
harmonic drive of frequency !d 6= !0

!0,!
0
0, ...

= synchronization by external forcing
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linear oscillators

NOTE: 
driven linear damped harmonic oscillator 

non-linearity is crucial for synchronization

solution: damped eigenmodes  + 

ẍ+ �ẋ+ !

2
0x = ⌦ cos(!dt)

A cos(!dt)

will always adjust to an external drive frequency
(after a transient) - this is NOT synchronization

the same applies to eigenmodes of coupled linear
harmonic oscillators
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phase          parametrizes motion along one cycle of the 
oscillator
amplitude is assumed to be constant

undisturbed dynamics: 
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synchronization by external forcing

phase          parametrizes motion along one cycle of the 
oscillator
amplitude is assumed to be constant

undisturbed dynamics: 

�(t)

d�(t)

dt
= �̇(t) = !0

always possible by re-parametrization:
         non-uniform ⇒

uniform

�̃(t)

�(t) = !0

Z �̃

0
d�̃

 
d�̃

dt

!�1
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synchronization by external forcing

drive by a periodic force of frequency               and 
amplitude     :

where     is      -periodic in both arguments

define deviation �� = �� !dt

✏

�̇(t) = !0 + ✏Q(�,!dt)

!d ⇡ !0

2⇡Q

Fourier-expansion of    and averaging 
(→ vanishing of rapidly oscillating terms) leads to

Adler 1946
d��(t)

dt
= !0 � !d + ✏q(��)

Q
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    is      -periodic

simplest choice: q(��) = sin(��)

d��(t)

dt
= !0 � !d + ✏q(��)

d��(t)

dt
= !0 � !d + ✏ sin(��)

q 2⇡

synchronization, i.e.,

possible for 
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Adler plot of observed frequency

(time average); differs in general from both     
 and 
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side remark

Adler equation

appears in many areas of physics: e.g.

superconductivity (Shapiro steps)

quantum optics  (ring-laser gyros)

d��(t)

dt
= !0 � !d + ✏ sin(��)
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I = Ic sin�+
~

2eR

d�

dt
+

C~
2e

d2�

dt2

RSJ model

J
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current-biased Josephson junction

I = Ic sin�+
~

2eR

d�

dt
+

C~
2e

d2�

dt2

Adler equation!

“synchronized” state with

for “detuning” I/Ic < 1
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current-biased Josephson junction

• strictly speaking, J junction is a rotator 
(and not a self-sustained oscillator)

• can be synchronized by a periodic external force 
(Shapiro steps) or to another J junction



Shapiro steps

current-biased Josephson junction + harmonic current bias:

I0 + I1 sin!dt =
~

2eR

d�

dt
+ Ic sin�

additional synchronization plateaus
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2 oscillators, no external forcing

undistorted frequencies

weak interaction affects only the phases �1,�2

�̇1(t) = !1 + ✏Q1(�1,�2)

�̇2(t) = !2 + ✏Q2(�2,�1)

Fourier expansion, averaging to get rid of rapidly oscillating 
terms leads to

d��(t)

dt
= !1 � !2 + ✏q(��)

Adler equation!  

!1 ,!2



2 oscillators, no external forcing

the two oscillators will lock in on a common frequency 
between      and

→ spontaneous synchronization
 

!1 !2



ensembles of coupled oscillators

N coupled phase oscillators         ,
random frequencies      described by probability density 

�̇i = !i +
NX

j=1

Kij sin(�j � �i), i = 1, . . . , N

!i g(!)
�i(t)

Kuramoto model (1975), 
solvable for infinite-range coupling Kij = ✏/N > 0



ensembles of coupled oscillators

N coupled phase oscillators         ,
random frequencies      described by probability density 

�̇i = !i +
NX

j=1

Kij sin(�j � �i), i = 1, . . . , N

!i g(!)
�i(t)

Kuramoto model (1975), 
solvable for infinite-range coupling Kij = ✏/N > 0

non-equilibrium phase transition to a synchronized state 
as a function of ✏
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ensembles of coupled oscillators

degree of synchronicity described by order parameter

�̇i = !i + ✏r sin( � �i), i = 1, . . . , N

substituted back in the Kuramoto equation gives

→each oscillator couples to the common average phase  (t)

rei =
1

N

NX

j=1

ei�j

0  r(t)  1 measures the coherence of the ensemble

is the average phase (t)

transition to           → synchronizationr 6= 0



partial coherence

�̇i = !i + ✏r sin( � �i), i = 1, . . . , N

interpretation of                  :

typical oscillator running with velocity
will become stably locked at an angle such that

! � ✏r sin(��  )
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partial coherence

�̇i = !i + ✏r sin( � �i), i = 1, . . . , N

interpretation of                  :

typical oscillator running with velocity
will become stably locked at an angle such that

! � ✏r sin(��  )

✏r sin(��  ) = ! �⇡/2  ��   ⇡/2

oscillators with frequencies               cannot be locked|!| > ✏r

0 < r < 1

→ three groups: 
(i) synchronized
(ii) unsynchronized, velocity
(iii) unsynchronized, velocity 

>  ̇
<  ̇



Kuramoto’s results

for               , transition from incoherent state             to 
partially coherent              state occurs at 

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)
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Kuramoto’s results

for               , transition from incoherent state             to 
partially coherent              state occurs at 

exact solution - pretty amazing!

J.A. Acebron et al., Rev. Mod. Phys. 77, 317 (2005)
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simulation with N=900 oscillators

example: 

synchronization transition at 

for  ✏ = 4

� = 1 g(!) =
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1 + !2
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1� ✏c

✏
⇡ 0.71



simulation with N=900 oscillators

example: 

synchronization transition at 

for  ✏ = 4

� = 1 g(!) =
1

⇡

1

1 + !2

✏c = 2

r =

r
1� ✏c

✏
⇡ 0.71

nice simulation program: Synched by Per Sebastian Skardal

https://sites.google.com/site/persebastianskardal/software/synched

“K” corresponds to ✏

gives amplitude and phase of the order parameter

https://sites.google.com/site/persebastianskardal/software/synched
https://sites.google.com/site/persebastianskardal/software/synched


realization in a one-dim Josephson array

uncoupled Josephson junctions
                     = rotators with 

K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

!i =
2e

~ RS

q
I2 � I2Ci

I
CR

I
L

...
R

C1

S

I

R

C2

S

I

RS

I Cn

global coupling by RCL branch 
⇒ natural realization of the Kuramoto model



realization in a one-dim Josephson array
K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

LQ̈+RQ̇+
Q

C
=

~
2e

NX

k

�̇k

I
CR

I
L

...
R

C1

S

I

R

C2

S

I

RS

I Cn

for each junction I � Q̇ = ICk sin�k +
~

2eRS
�̇k



realization in a one-dim Josephson array
K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

LQ̈+RQ̇+
Q

C
=

~
2e

NX

k

�̇k

I
CR

I
L

...
R

C1

S

I

R

C2

S

I

RS

I Cn

for each junction 

uniformly rotating phases     in the uncoupled case  Q̇ = 0✓k
d✓k
!k

= dt =
d�k

(2eRS/~)(I � ICk sin�k)

I � Q̇ = ICk sin�k +
~

2eRS
�̇k



realization in a one-dim Josephson array
K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

combined with

˙✓k = !k � !k
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realization in a one-dim Josephson array
K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

first-order averaging ⇒

✓̇k = !k � K

N

NX

j

sin(✓k � ✓j + ↵) Kuramoto!

combined with
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˙Q

I2 � I2Ck

(I � ICk cos ✓k)
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~
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realization in a one-dim Josephson array
K. Wiesenfeld, P. Colet, and S.H. Strogatz, PRL 76, 404 (1996)

first-order averaging ⇒

✓̇k = !k � K

N

NX

j

sin(✓k � ✓j + ↵) Kuramoto!

cos↵ =

L!̄2 � 1/C

[(L!̄2 � 1/C)

2
+ !̄2

(R+NRS)
2
]

1/2

K =
NRS!̄(2eRSI/~� !̄)

[(L!̄2 � 1/C)2 + !̄2(R+NRS)2]1/2

combined with

˙✓k = !k � !k
˙Q

I2 � I2Ck

(I � ICk cos ✓k)

yieldsI � Q̇ = ICk sin�k +
~

2eRS
�̇k



quantum synchronization

• experimental situation?

• does it exist at all?

• how to quantify and measure it?

• relation to other measures of  `quantumness’ 
(entanglement, mutual information, ...)

so far only classical non-linear systems

synchronization in quantum systems:



conclusion 

• classical synchronization is well-studied, 

• simplest model: one self-oscillator + external forcing
→ Adler equation

• frequency locking if detuning < drive strength

• two oscillators lock if detuning < coupling

• synchronization (phase) transition in ensembles of
mutually coupled self-oscillators: Kuramoto model

d��(t)

dt
= !0 � !d + ✏ sin(��)



appendix 


