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5.Main results

In this sectionwe briefly state ourmain results, whichwill be discussed in the following sections.Most notably, it
is known even from the classical theory that two coupled optomechanical oscillators can be in either one of two
synchronization states (with a phase difference near 0 or nearπ).Wefind a regime of ‘mixed’ synchronization,
where transitions between 0- andπ-synchronization occur (section 6). These transitions are driven by (quantum
or thermal)noise and cannot be found in the classical, noiseless situation. The average residence times in the two
synchronization states can differ and their ratio varies with the systemparameters (section 7). Investigating the
classical-to-quantum transition, wefind thatmixed synchronization can evolve from twodifferent regimes in
the classical, noiseless limit: (i) there are already two stable synchronization states but in the absence of noise
there are no transitions, (ii) there is only one stable synchronization state and only the presence of noise leads to a
second stable solution. Although thefirst sections are devoted to the investigation of quantumnoise effects, we
note that wefind similar effects for thermal noise acting on themechanical resonator.However, quantitative
differences remain due to the different nature of the noise source (section 9).Wefind that quantumnoise effects
should dominate over thermal noise effects if the optomechanical cooperativity is sufficiently large, and a large
value of g0 is not necessarily required.

6.Multistable quantum synchronization

First, we start by analyzing two coupled optomechanical systems, seefigure 1(a), deep in the quantum regime.
Quantum jump trajectories are used to initially investigate the full quantumdynamics. In the following, we
consider a small-amplitude limit cycle and a large single-photon coupling strength, g 10 L � . This ensures that
quantumfluctuations can potentially have a large impact on the system’s dynamics. Furthermore, small photon
and phononnumbers are necessary to keep the numerical simulations tractable, since they determine the size of
the truncatedHilbert space.

To study synchronizationwe focus on the relative phase 2 1EG G G� � between the optomechanical
oscillators. Classically, EG allows to identify synchronization ( constEG � ) and distinguish the different
synchronization regimes (0- andπ-synchronization). To extract the relative phase at each time step of a

Figure 3.Multistability in optomechanical quantum synchronization.Distribution of the relative phase EG in different
synchronization regimes, a typical sample of a corresponding quantum jump trajectory starting in the steady state, and a sketch of the
corresponding effective potential. (a) shows 0-synchronization, (b) showsπ-synchronization, and (c) showsmixed synchronization.
A rotatingwave approximation for themechanical coupling has been used.[Parameters: (a)mechanical coupling K 0.38 � ,
mechanical damping 0.015;( 8 � (b) K 0.158 � , 0.01;( 8 � (c) K 0.158 � , 0.015;( 8 � other parameters are: optical
damping 0.3L 8 � , laser driving strength 0.3LB 8 � , optomechanical coupling g 10 L � , and optical detuning 0.15% 8 � .]
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phase distribution and typical quantum trajectories for two 
coupled (optomechanical) limit-cycle oscillators
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consider two oscillators

q�(t) := (q1 � q2)/
p
2 p�(t) := (p1 � p2)/

p
2

complete classical synchronization means q�(t), p�(t) ! 0

Sc(t) := hq�(t)2 + p�(t)
2i�1

idea: quantum synchronization measure

synchronization and quantum uncertainty:
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Heisenberg uncertainty relation

Sc(t) 
1

2
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hq�(t)2ihp�(t)2i
 1

hence (geometric < arithmetic mean)

universal limit to the complete synchronization of two
continuous-variable systems
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measure of phase synchronization:
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two optomechanical cells; reactive coupling 

Estimating phase synchronization as in Eq. (5) requires
instead a further step as the latter has been defined
with respect to a reference frame rotating with the phases
of the average trajectories; see Eq. (4). This corresponds
to a diagonal and unitary operation on R, built up on
the phases ’a1ðtÞ ¼ argha1ðtÞi, ’a2ðtÞ ¼ argha2ðtÞi, etc.,
of the classical orbits: i.e., R ! R0 ¼ UðtÞR with UðtÞ¼
diag½e%i’a1

ðtÞ;ei’a1
ðtÞ; . . .&. The associated covariance matrix

is C0ðtÞ ¼ UðtÞCðtÞUðtÞy, from which we can directly
extract the mechanical variance hp02

%ðtÞi entering Eq. (5).
A simulation of the complete and phase synchronization

between the mechanical modes is plotted in Fig. 2(a) using
realistic values for the parameters [4,5] (see caption for
details). After an initial transient, the system reaches a
periodic steady state in which ScðtÞ and SpðtÞ are signifi-

cantly larger then zero, implying that both complete and
phase synchronization take place in the system. Their value
is consistent with the fundamental limit (2) imposed by the
Heisenberg principle and with the heuristic bound (7)
presented in the previous section. Indeed we numerically
find that quantum squeezing in the p0

%ðtÞ quadrature,
needed to overcome the nonclassicality threshold (6), is
absent in the system. Figures 2(b) and 2(c) report instead
the behavior of the time-averaged measures of complete

and phase synchronization for different values of the
coupling constant and of the bath temperature. We vary
! from zero [36] to a maximum threshold above which the
classical equations are perturbed too much, destroying the
limit cycles.
Finally, we have checked if quantum correlations are

present in the system verifying that, consistently with the
difference between entanglement and synchronization
detailed in the previous section, for many choices of the
parameters entanglement negativity is always zero even
though synchronization is reached. On the contrary, a non-
zero level of Gaussian quantum discord [37] [Fig. 2(b)]
between the two mechanical modes is observed for all
values of ! that lead to synchronization. Still, our data
are not sufficient to clarify the functional relationship
between discord and synchronization (if it exists).
The synchronization observed between the oscillators is

expected to emerge also when more than two parties are
present in the setup. In particular, we focus on the case of a
(closed) chain formed by N optomechanical systems with
first neighbor interactions [the Hamiltonian being the natu-
ral generalization of (8) with uniform parameters]. As
before, we enforce the driving detuning condition ! ¼ !
and set the laser intensities E in order that each optome-
chanical system converges to a stable limit cycle. Once
these prerequisites are fulfilled, we linearize the dynamics
around the classical steady state, which is assumed to be
the same (synchronized) in each site; i.e., hajðtÞi ¼ "ðtÞ
and hbjðtÞi ¼ #ðtÞ for all j. This corresponds to a mean-
field approximation applied only to the classical dynamics,
while the fluctuation terms a0j and b

0
j can be treated exactly

(without mean field) since the associated Hamiltonian is
quadratic. Figure 2(d) reports the results obtained for two
mechanical modes separated by h lattice steps: we notice
that the synchronization level among the various elements
persists even if an exponential decay in h is present
(a behavior which is consistent with the one-dimensional
topology induced by the selected interactions).
Summary.—We have quantitatively studied the phe-

nomenon of spontaneous synchronization in the setting of
coupled CV quantum systems. We have shown that quan-
tum mechanics sets universal limits to the level of synchro-
nization and discussed the relationship between this
phenomenon and the emergence of quantum correlations.
Finally, we have analyzed the spontaneous synchronization
of optomechanical arrays driven into self-sustained oscil-
lations. A large number of open aspects are worth being
further investigated, amongwhich are the interplay between
quantum correlations and synchronization, the application
of this theory to other physical systems such as coupled
optical cavities [16], self-locking lasers [38], etc., and the
interpretation of synchronization as a useful resource for
quantum communication and quantum control.
This work has been supported by IP-SIQS, PRIN-MIUR

and SNS (Giovani Ricercatori 2013). N.D. acknowledges
support from CIFAR.
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FIG. 2 (color online). (a) Simulation of the complete (blue)
and phase (green) synchronization measures (1) and (5) between
the mechanical resonators as functions of time (in units of
$ ¼ 2%=!1). The dashed lines indicate the corresponding
time-averaged asymptotic values, i.e., the quantities "Sx ¼
limT!1

1
T

R
T
0 SxðtÞdt for x ¼ c, p. Setting !1 ¼ 1 as a reference

unit of frequency, the other physical parameters that have been
used in the simulation are !2 ¼ 1:005, & ¼ 0:005, !j ¼ !j,
' ¼ 0:15, g ¼ 0:005, ! ¼ 0:02, nb ¼ 0, and E ¼ 320.
(b) Time-averaged complete (circles) and phase (squares) syn-
chronization and Gaussian discord DG (diamonds) as functions
of the coupling constant !. (c) Time-averaged synchronization
measures as functions of the bath mean phonon number nb.
(d) Synchronization between two arbitrary mechanical modes of
a chain of 20 coupled optomechanical systems as a function of
the lattice distance h. All subsystems are assumed to have the
same mechanical frequency ! ¼ 1.
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V. Ameri et al., PRA 91, 012301 (2015)

mutual information as an order parameter for quantum 
synchronization between two subsystems ⇢1, ⇢2

can be applied to both continuous-variable and 
finite-dimensional systems

I = S(⇢1) + S(⇢2)� S(⇢)

= �Tr[⇢1 ln ⇢1]� Tr[⇢2 ln ⇢2] + Tr[⇢ ln ⇢]
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FIG. 1. (Color online) Synchronization analysis for the steady
state of the two-VdPs model (2): (a),(b),(c) Mutual information;
(d),(e),(f) semiclassical synchronization measure defined in Eq. (4).
The quantumness parameter for (a),(d) is κ2/κ1 = 0.1; for (b),(e) is
κ2/κ1 = 10; and for (c),(f) is κ2/κ1 = 100. " (units of κ1) is the
detuning of VdPs and g (units of κ1) is the coupling strength.

and the typical Arnold tongue is smoothed due to the presence
large quantum fluctuations.

In order to justify the use of mutual information as a
valid order parameter, we also compare it with a semiclassical
measure of complete synchronization introduced in [7]. This
is defined as

Sc = ⟨p2
− + q2

−⟩−1, (4)

where p− = (p2 − p1)/
√

2, q− = (q2 − q1)/
√

2, and qi =
(ai + a

†
i )/

√
2, pi = i(a†

i − ai)/
√

2 are the dimensionless po-
sition and momentum operators of the VdP oscillators.

The interesting result here is that both the synchronization
measure (4) and the mutual information have the same
qualitative behavior, justifying our idea of using mutual
information as an order parameter. Actually, due to the small
amount of phonons in the system, the semiclassical quantity
(4) is significantly nonzero even when the system is not
synchronized (this effect is negligible only in the large energy
regime). This fact may be considered an unwanted feature
for a well-behaving order parameter. On the contrary, mutual
information does not suffer from this problem and, even
in the deeply quantum regime, the quantity is zero outside
synchronization region.

As a side remark we comment that in all the cases
considered in Fig. 1, we did not find entanglement even in
the presence of synchronization. This fact suggests that there
is not a one-to-one correspondence between entanglement and
synchronization, even if there are cases in which this relation
is present, as recently reported in Ref. [9].

IV. SYNCHRONIZATION OF TWO QUBITS

In the previous section we studied the synchronization of
two VdP resonators. Now we consider the synchronization of
two qubits which are coupled by optical radiation. As we show,
even in this intrinsically quantum case, mutual information can
be used as an order parameter for synchronization.

We assume that the two qubits are placed in two coupled
optical cavities where only the first cavity is driven by a laser,
while the second one is populated by the photons leaking
from the first cavity. The setup is described in Fig. 2 and the
corresponding Hamiltonian is

H = ω1a
†
1a1 + ω2a

†
2a2 + ω1σz1 + ω2σz2 + E(a†

1 + a1)

+ g(a†
1a2 + a

†
2a1) + µ(a1 + a

†
1)σx1 + µ(a2 + a

†
2)σx2,

(5)

where ! = 1, E determines the strength of the external driving
on the first cavity, and g and µ are the optical coupling
constant and the qubit-field coupling constant, respectively. We
assume that each cavity is resonant with its own internal qubit,
while the detuning " = ω2 − ω1 between the characteristic
frequencies of the two qubits can be nonzero. We also take
into account the dissipation of both optical cavities into
the environment, while, for simplicity, we neglect the direct
decoherence of the qubits. The corresponding master equation
is then

dρ

dt
= −i[ρ,H ] +

2∑

i=1

κ(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai). (6)

In order to study the emergence of synchronization, we
compute the mutual information between the two qubits on the
steady state of the system as a function of the detuning " and of
the optical coupling constant g. Similarly to the previous case
involving VdP oscillators, the mutual information in nonzero
in a parameter region with the characteristic shape of an Arnold
tongue. Moreover, also in this case we observe a threshold
value of the coupling g, below which mutual information is

FIG. 2. (Color online) a1,a2 and q1,q2 are the optical modes and
qubits in the first and second cavities, respectively. E is a driving laser
amplitude which is applied to the first cavity. Photons can coherently
hop from one cavity to the other with a rate g.
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FIG. 1. (Color online) Synchronization analysis for the steady
state of the two-VdPs model (2): (a),(b),(c) Mutual information;
(d),(e),(f) semiclassical synchronization measure defined in Eq. (4).
The quantumness parameter for (a),(d) is κ2/κ1 = 0.1; for (b),(e) is
κ2/κ1 = 10; and for (c),(f) is κ2/κ1 = 100. " (units of κ1) is the
detuning of VdPs and g (units of κ1) is the coupling strength.

and the typical Arnold tongue is smoothed due to the presence
large quantum fluctuations.

In order to justify the use of mutual information as a
valid order parameter, we also compare it with a semiclassical
measure of complete synchronization introduced in [7]. This
is defined as

Sc = ⟨p2
− + q2

−⟩−1, (4)

where p− = (p2 − p1)/
√

2, q− = (q2 − q1)/
√

2, and qi =
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†
i )/

√
2, pi = i(a†

i − ai)/
√

2 are the dimensionless po-
sition and momentum operators of the VdP oscillators.

The interesting result here is that both the synchronization
measure (4) and the mutual information have the same
qualitative behavior, justifying our idea of using mutual
information as an order parameter. Actually, due to the small
amount of phonons in the system, the semiclassical quantity
(4) is significantly nonzero even when the system is not
synchronized (this effect is negligible only in the large energy
regime). This fact may be considered an unwanted feature
for a well-behaving order parameter. On the contrary, mutual
information does not suffer from this problem and, even
in the deeply quantum regime, the quantity is zero outside
synchronization region.

As a side remark we comment that in all the cases
considered in Fig. 1, we did not find entanglement even in
the presence of synchronization. This fact suggests that there
is not a one-to-one correspondence between entanglement and
synchronization, even if there are cases in which this relation
is present, as recently reported in Ref. [9].

IV. SYNCHRONIZATION OF TWO QUBITS

In the previous section we studied the synchronization of
two VdP resonators. Now we consider the synchronization of
two qubits which are coupled by optical radiation. As we show,
even in this intrinsically quantum case, mutual information can
be used as an order parameter for synchronization.

We assume that the two qubits are placed in two coupled
optical cavities where only the first cavity is driven by a laser,
while the second one is populated by the photons leaking
from the first cavity. The setup is described in Fig. 2 and the
corresponding Hamiltonian is

H = ω1a
†
1a1 + ω2a

†
2a2 + ω1σz1 + ω2σz2 + E(a†

1 + a1)

+ g(a†
1a2 + a

†
2a1) + µ(a1 + a

†
1)σx1 + µ(a2 + a

†
2)σx2,

(5)

where ! = 1, E determines the strength of the external driving
on the first cavity, and g and µ are the optical coupling
constant and the qubit-field coupling constant, respectively. We
assume that each cavity is resonant with its own internal qubit,
while the detuning " = ω2 − ω1 between the characteristic
frequencies of the two qubits can be nonzero. We also take
into account the dissipation of both optical cavities into
the environment, while, for simplicity, we neglect the direct
decoherence of the qubits. The corresponding master equation
is then

dρ

dt
= −i[ρ,H ] +

2∑

i=1

κ(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai). (6)

In order to study the emergence of synchronization, we
compute the mutual information between the two qubits on the
steady state of the system as a function of the detuning " and of
the optical coupling constant g. Similarly to the previous case
involving VdP oscillators, the mutual information in nonzero
in a parameter region with the characteristic shape of an Arnold
tongue. Moreover, also in this case we observe a threshold
value of the coupling g, below which mutual information is

FIG. 2. (Color online) a1,a2 and q1,q2 are the optical modes and
qubits in the first and second cavities, respectively. E is a driving laser
amplitude which is applied to the first cavity. Photons can coherently
hop from one cavity to the other with a rate g.
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FIG. 1. (Color online) Synchronization analysis for the steady
state of the two-VdPs model (2): (a),(b),(c) Mutual information;
(d),(e),(f) semiclassical synchronization measure defined in Eq. (4).
The quantumness parameter for (a),(d) is κ2/κ1 = 0.1; for (b),(e) is
κ2/κ1 = 10; and for (c),(f) is κ2/κ1 = 100. " (units of κ1) is the
detuning of VdPs and g (units of κ1) is the coupling strength.
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measure (4) and the mutual information have the same
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information as an order parameter. Actually, due to the small
amount of phonons in the system, the semiclassical quantity
(4) is significantly nonzero even when the system is not
synchronized (this effect is negligible only in the large energy
regime). This fact may be considered an unwanted feature
for a well-behaving order parameter. On the contrary, mutual
information does not suffer from this problem and, even
in the deeply quantum regime, the quantity is zero outside
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As a side remark we comment that in all the cases
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the presence of synchronization. This fact suggests that there
is not a one-to-one correspondence between entanglement and
synchronization, even if there are cases in which this relation
is present, as recently reported in Ref. [9].
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be used as an order parameter for synchronization.
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optical cavities where only the first cavity is driven by a laser,
while the second one is populated by the photons leaking
from the first cavity. The setup is described in Fig. 2 and the
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on the first cavity, and g and µ are the optical coupling
constant and the qubit-field coupling constant, respectively. We
assume that each cavity is resonant with its own internal qubit,
while the detuning " = ω2 − ω1 between the characteristic
frequencies of the two qubits can be nonzero. We also take
into account the dissipation of both optical cavities into
the environment, while, for simplicity, we neglect the direct
decoherence of the qubits. The corresponding master equation
is then
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= −i[ρ,H ] +
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In order to study the emergence of synchronization, we
compute the mutual information between the two qubits on the
steady state of the system as a function of the detuning " and of
the optical coupling constant g. Similarly to the previous case
involving VdP oscillators, the mutual information in nonzero
in a parameter region with the characteristic shape of an Arnold
tongue. Moreover, also in this case we observe a threshold
value of the coupling g, below which mutual information is

FIG. 2. (Color online) a1,a2 and q1,q2 are the optical modes and
qubits in the first and second cavities, respectively. E is a driving laser
amplitude which is applied to the first cavity. Photons can coherently
hop from one cavity to the other with a rate g.
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vdP oscillators:
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Entanglement tongue and quantum synchronization of disordered oscillators
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We study the synchronization of dissipatively coupled van der Pol oscillators in the quantum limit, when
each oscillator is near its quantum ground state. Two quantum oscillators with different frequencies exhibit
an entanglement tongue, which is the quantum analog of an Arnold tongue. It means that the oscillators are
entangled in steady state when the coupling strength is greater than a critical value, and the critical coupling
increases with detuning. An ensemble of many oscillators with random frequencies still exhibits a synchronization
phase transition in the quantum limit, and we analytically calculate how the critical coupling depends on the
frequency disorder. Our results can be experimentally observed with trapped ions or neutral atoms.
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I. INTRODUCTION

Synchronization is a fascinating phenomenon at the in-
terface of statistical physics and nonlinear dynamics [1,2].
It is a collective behavior that arises among a group of
self-sustained oscillators, each with a random intrinsic fre-
quency. The interaction between the oscillators overcomes the
frequency disorder and causes them to oscillate in unison.
Synchronization of biological cells plays an important role in
heart beats [3], circadian rhythm [4], and neural networks [5].
It is also important in active hydrodynamic systems [6],
such as the beating of flagella [7] and arrays of cilia [8].
Applications of synchronization include the self-organization
of laser arrays [9], improving the frequency precision of
oscillators [10], and stabilizing atomic clocks with each
other [11].

There has been much theoretical work on synchronization
of classical oscillators. Each oscillator is usually modeled as
a nonlinear dynamical system with a limit-cycle solution that
oscillates with its own intrinsic frequency. Then due to the
mutual interaction, the oscillators spontaneously synchronize
with each other in steady state.

Synchronization is usually studied in two scenarios: two
oscillators and a large ensemble of oscillators with all-to-all
coupling. In the case of two oscillators, phase locking occurs
when the coupling strength is above a critical value [1,12].
This critical coupling increases with the oscillators’ frequency
detuning. The “Arnold tongue” refers to the set of coupling and
detuning values for which phase locking occurs [Fig. 1(a)].
In the case of a large ensemble of oscillators with random
frequencies, there is a nonequilibrium phase transition from
the unsynchronized phase to the synchronized phase [13–19].
The critical coupling for the phase transition depends on the
frequency disorder.

There has been growing interest in synchronization of
quantum systems [20–26]. In this case, each oscillator is a
quantum harmonic oscillator with driving, dissipation, and
nonlinearity. The classical limit corresponds to when each
oscillator has many phonons (or photons), while the quantum
limit corresponds to when each oscillator is near its quantum
ground state. Quantum mechanics introduces two effects. The
first is quantum noise, which is due to the oscillator gaining or

∆ (units of κ
1
)

V
 (

un
its

 o
f κ

1)

(a)

locked

unlocked

−10 −5 0 5 10

5

4

3

2

1

0

∆ (units of κ
1
)

V
 (

un
its

 o
f κ

1)
(b)

entangled

unentangled

−100 −50 0 50 100

50

40

30

20

10

0 0

0.04

0.08

0.12

0.16

FIG. 1. (Color online) (a) Arnold tongue for phase locking of
two classical oscillators. V is the coupling strength, and ! is the
difference of the intrinsic frequencies. (b) Entanglement tongue for
two oscillators in the quantum limit. Concurrence is plotted using
color scale on right. The dashed line marks the edge of the entangled
region.

losing individual phonons [27]. The second effect is that the
oscillators can be quantum mechanically entangled with each
other [28]. The general question is whether synchronization
survives in the quantum limit, and how quantum mechanics
qualitatively changes the behavior.

To study quantum synchronization, it is useful to consider
quantum van der Pol oscillators [22,23], since there has been
a lot of work on the synchronization of classical van der Pol
oscillators [1,12,16–19]. Recently, one of us showed that when
the quantum oscillators are reactively coupled (via a term in
the Hamiltonian), there is no synchronization or entanglement
in the quantum limit, when the oscillators are confined to the
ground state |0⟩ and the single-phonon state |1⟩ [22]. This is
because quantum noise washes out the phase correlations.

In this paper, we study the synchronization of dissipatively
coupled van der Pol oscillators in the quantum limit, and we
find significant differences with the reactive case. We first
consider the case of two quantum oscillators. We find that
the oscillators still exhibit phase correlations in the quantum
limit, when each oscillator occupies only |0⟩ and |1⟩. Also, the
oscillators exhibit entanglement, which is a genuinely quantum
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Quantum many-body dynamics in optomechanical arrays
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We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical sys-
tems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity
mode via radiation pressure, and both photons and phonons can hop between neighboring sites.
The competition between coherent interaction and dissipation gives rise to a rich phase diagram
characterizing the optical and mechanical many-body states. For weak intercellular coupling, the
mechanical motion at di↵erent sites is incoherent due to the influence of quantum noise. When
increasing the coupling strength, however, we observe a phase transition towards a regime of phase-
coherent mechanical oscillations. This transition and the phase diagram of the system are studied
using a Gutzwiller ansatz for the dynamics of the driven-dissipative system.

Introduction. - Recent experimental progress has
brought optomechanical systems into the quantum
regime: A single mechanical mode interacting with a
laser-driven cavity field has been cooled to the ground
state [1, 2]. Several of these setups, in particular op-
tomechanical crystals, o↵er the potential to be scaled up
to form optomechanical arrays. Applications of such ar-
rays for quantum information processing [3, 4] have been
proposed lately. Given these developments, one is led
to explore quantum many-body e↵ects in optomechani-
cal arrays. In this work, we analyze the nonlinear photon
and phonon dynamics in a homogeneous two-dimensional
optomechanical array. In contrast to earlier works [3–6],
here we study the array’s quantum dynamics beyond a
quadratic Hamiltonian. To tackle the non-equilibrium
many-body problem of this nonlinear dissipative system,
we employ a mean-field approach for the collective dy-
namics. First, we discuss photon statistics in the array,
in particular how the photon blockade e↵ect [7] is al-
tered in the presence of intercellular coupling. The main
part of the article focusses on the transition of the collec-
tive mechanical motion from an incoherent state (due to
quantum noise) to an ordered state with phase-coherent
mechanical oscillations. For these dynamics, the dissipa-
tive e↵ects induced by the optical modes play a crucial
role. On the one hand, they allow the mechanical modes
to settle into self-induced oscillations [8–15] once the op-
tomechanical amplification rate exceeds the intrinsic me-
chanical damping, see Fig. 1(b). On the other hand,
the fundamental quantum noise (e.g. cavity shot noise)
di↵uses the mechanical phases and prevents the mechan-
ical modes from synchronizing. This interplay leads to
an elaborate phase diagram characterizing the transition.
To gain further insight, we develop a semiclassical model
describing the coupling of the mechanical phases and the
influence of quantum noise.

While true long-range order is prohibited for a
two-dimensional system with continuous symmetry,
a Beresinskii-Kosterlitz-Thouless transition towards a
state with quasi-long range order is possible. The ordered
mechanical phase thus resembles the superfluid phase in

mechanical mode

optical mode

intercellular coupling

b

driving strength

a

Figure 1. (a) Optomechanical array with localized mechani-
cal (b̂j) and laser-driven optical modes (âj) at each site. The
optical and mechanical coupling between neighboring sites is
set by J and K, respectively. (b) Onset of self-induced oscil-
lations for an isolated mechanical mode as a function of laser
driving strength (schematic). The classical dynamics (black
solid line) show a bifurcation. Quantum fluctuations blur the
transition (dashed blue line) and generate a mechanical state
whose phase is completely undetermined, see also Fig. 3(b).

two dimensional cold atomic gases [16] or Josephson junc-
tion arrays [17]. Notably, optomechanical arrays com-
bine the tunability of optical systems with the robustness
and durability of an integrated solid-state device. Other
driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [18–23], nonlinear cavity arrays [24, 25] and opti-
cal fibres [26]. In a very recent work and along the lines
of [18], the preparation of long-range order for photonic
modes was proposed using the linear dissipative e↵ects
in an optomechanical array [6]. Our work adds the novel
aspect of a mechanical phase transition to the studies of
driven dissipative many-body systems.
Model. - We study the collective quantum dynamics of

a two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical
mode and a laser driven optical mode that interact via
the radiation pressure coupling at a rate g

0

(~ = 1):

Ĥ
om,j = ��â†j âj +⌦b̂†j b̂j �g

0

(b̂†j + b̂j)â
†
j âj +↵L(â

†
j + âj).

(1)
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Quantum Synchronization of Two Ensembles of Atoms

Minghui Xu, D. A. Tieri, E. C. Fine, James K. Thompson, and M. J. Holland1

1JILA, National Institute of Standards and Technology and Department of Physics,
University of Colorado, Boulder, Colorado 80309-0440, USA

(Dated: July 24, 2013)

We propose a system for observing the correlated phase dynamics of two mesoscopic ensembles of atoms
through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced
by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the
cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two
disparate oscillators to the phase-locking that is the signature of quantum synchronization.

PACS numbers: 05.45.Xt, 42.50.Lc, 37.30.+i, 64.60.Ht

Synchronization is an emergent phenomenon that describes
coupled objects spontaneously phase-locking to a common
frequency in spite of differences in their natural frequen-
cies [1]. It was famously observed by Huygens, the seven-
teenth century clock maker, in the antiphase synchronization
of two maritime pendulum clocks [2]. Dynamical synchro-
nization is now recognized as ubiquitous behavior occurring
in a broad range of physical, chemical, biological, and me-
chanical engineering systems [1, 3, 4].

Theoretical treatments of this phenomenon are often based
on the study of phase models [5, 6], and as such have been ap-
plied to an abundant variety of classical systems, including the
collective blinking of fireflies, the beating of heart cells, and
audience clapping. The concept can be readily extended to
systems with an intrinsic quantum mechanical origin such as
nanomechanical resonators [7, 8], optomechanical arrays [9],
and Josephson junctions [10, 11]. When the number of cou-
pled oscillators is large, it has been demonstrated that the on-
set of classical synchronization is analogous to a thermody-
namic phase transition [12] and exhibits similar scaling be-
havior [13].

Recently, there has been increasing interest in exploring
manifestations in the quantum realm. Small systems have
been considered, e.g., one qubit [14] and two qubits [15] cou-
pled to a quantum dissipative driven oscillator, two dissipative
spins [16], two coupled cavities [17], and two micromechani-
cal oscillators [18, 19]. Connections between quantum entan-
glement and synchronization have been revealed in continu-
ous variable systems [19]. It has been shown that quantum
synchronization may be achieved between two canonically
conjugate variables [20]. Since the phenomenon is inherently
non-equilibrium, all of these systems share the common prop-
erty of competition between coherent and incoherent driving
and dissipative forces.

In this paper, we propose a modern-day realization of the
original Huygens experiment [2]. We consider the synchro-
nization of two active atomic clocks coupled to a common
single-mode optical cavity. It has been predicted that in the
regime of steady-state superradiance [21–24] a neutral atom
lattice clock could produce an ultracoherent optical field with
a quality factor (ratio of frequency to linewidth) that ap-
proaches 1018. We show that two such clocks may exhibit

a dynamical phase transition [26–29] from two disparate os-
cillators to quantum phase-locked dynamics. The onset of
synchronization at a critical pump strength is signified by an
abruptly increased relative phase diffusion that diverges in
the thermodynamic limit. Besides being of fundamental im-
portance in nonequilibrium quantum many-body physics, this
work could have broad implications for many practical appli-
cations of ultrastable lasers and precision measurements [21].

The general setup is shown schematically in Fig. 1. Two
ensembles, each containing N two-level atoms with excited
state |e⟩ and ground state |g⟩, are collectively coupled to a
high-quality optical cavity. The transition frequencies of the
atoms in ensembles A and B are detuned from the cavity res-
onance by δ/2 and −δ/2 respectively. This could be achieved
by spatially separating the ensembles and applying an inho-
mogeneous magnetic field to induce a differential Zeeman
shift. The atoms in both ensembles are pumped incoherently
to the excited state, as could be realized by driving a transition
to a third state that rapidly decays to |e⟩ [23, 24].

This system is described by the Hamiltonian in the rotating
frame of the cavity field:

Ĥ =
!δ

2
(ĴzA − Ĵ

z
B) +
!Ω

2
(â† Ĵ−A + Ĵ

+

A â + â
† Ĵ−B + Ĵ

+

Bâ) , (1)

where Ω is the atom-cavity coupling, and â and â† are an-
nihilation and creation operators for cavity photons. Here
ĴzA,B =

1
2
∑N

j=1 σ̂
z
(A,B) j and Ĵ−A,B =

∑N
j=1 σ̂

−
(A,B) j are the collective

atomic spin operators, written in terms of the Pauli operators
for the two-level system σ̂z(A,B) j and σ̂−(A,B) j = (σ̂+(A,B) j)

†.

FIG. 1. (color online) Two ensembles of driven two-level atoms cou-
pled to a single-mode cavity field. The atoms in ensemble A are de-
tuned above the cavity resonance (dashed line). Ensemble B contains
atoms detuned below the cavity resonance by an equivalent amount.
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Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers
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We investigate quantum synchronization theoretically in a system consisting of two cold ions in microtraps.
The ions’ motion is damped by a standing-wave laser while also being driven by a blue-detuned laser which
results in self-oscillation. Working in a nonclassical regime, where these oscillations contain only a few phonons
and have a sub-Poissonian number variance, we explore how synchronization occurs when the two ions are
weakly coupled using a probability distribution for the relative phase. We show that strong correlations arise
between the spin and vibrational degrees of freedom within each ion and find that when two ions synchronize
their spin degrees of freedom in turn become correlated. This allows one to indirectly infer the presence of
synchronization by measuring the ions’ internal state.
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Introduction. Two macroscopic self-oscillators synchronize
when their relative phase locks to a fixed value [1]. Important
studies of synchronization effects were carried out using
lasers [2], with arrays of Josephson junctions [3] and over the
last few years much attention has been devoted to exploring
synchronization in micromechanical oscillators [4]. Recently,
theoretical work has begun to explore synchronization in
the quantum regime [5–14]: the formation of a relative
phase preference between two (or more) weakly coupled
quantum oscillators operating in a regime far from the
classical correspondence limit. Differences between classical
and quantum predictions for the synchronization of van der Pol
oscillators have been identified in the case where the oscillators
are only weakly excited [5]. Nevertheless, many important
questions about quantum synchronization remain open, such
as how it should be quantified and how it can best be probed
experimentally.

Cold ions in microtraps provide a natural platform for
exploring synchronization in the quantum regime [5]. The
generation of self-oscillations in the motional state of ions,
phonon lasing, has already been observed [15]. Furthermore,
precise control of trapping potentials of the individual ions can
now be achieved with microtraps [16] allowing the vibrational
frequencies of individual ions and the coupling between
different ions to be tuned. Here, we investigate synchronization
in two trapped-ion phonon lasers which are pumped in a similar
way to that demonstrated in recent experiments [15].

We identify a parameter regime where phonon lasing of
an individual ion occurs with just a few quanta leading
to a nonclassical state of the phonons and investigate the
emergence of synchronization in this regime when a weak
interion coupling is introduced (weak as it is the slowest time
scale in the system). Our model includes two of the electronic
levels of the ions used in the pumping process (which we
refer to as “spin”), allowing us to uncover strong correlations
which arise between the electronic and vibrational degrees
of freedom of the individual ions. We study the degree of
synchronization as the strength and detuning of the pumping
lasers are varied by calculating the probability distribution
for the relative phase of the ion’s phonons. Lastly we show
that synchronization between the ion’s vibrational degrees of

freedom can lead to correlations between the “spins” of the two
ions. Indeed, observation of spin correlations form a sufficient
and convenient method of inferring synchronization between
two phonon lasers.

Trapped ion setup. A sketch of the system we study is shown
in Fig. 1. Each ion is in a microtrap [16] with frequency ωj=1,2.
The quantized vibrational degrees of freedom (phonons) are
linearly damped at a rate ", which can be realized by laser
cooling techniques [17,18]. Each ion’s spin (internal) degree
of freedom is driven by standing wave lasers with Rabi
frequencies #̃j=1,2, which are set to be resonant with the
first blue sideband transition. The two ions interact weakly
via a dipole interaction which leads to a linear coupling of
their phonons with strength J [16]. In the rotating wave
approximation, the dynamics of the ions is governed by the
master equation,

ρ̇ = −i[H,ρ] +
∑

j=1,2

{
γ

2

∫ 1

−1
dzW (z)D[eiηqj zσ−

j ](ρ)

+"D[aj ](ρ)
}
, (1)

where the two-ion Hamiltonian H , angular distribution for
spontaneous emission W (z), and Lindblad dissipator D[L](ρ)

FIG. 1. (Color online) (a) Trapped-ion setup. Each ion is damped
at a rate " by a standing-wave laser and driven by a blue-detuned laser
of strength #j=1,2. The phonons have a dipole interaction of strength
J and the trap frequencies are ω1 and ω2. (b) Internal electronic states
of each ion. The “spin” states are pumped by a laser blue detuned
by frequency ωj=1,2 and undergo spontaneous emission at a rate γ .
The damping is achieved using a red-detuned drive on a different
electronic transition (not shown) and is eliminated adiabatically.
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We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical sys-
tems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity
mode via radiation pressure, and both photons and phonons can hop between neighboring sites.
The competition between coherent interaction and dissipation gives rise to a rich phase diagram
characterizing the optical and mechanical many-body states. For weak intercellular coupling, the
mechanical motion at di↵erent sites is incoherent due to the influence of quantum noise. When
increasing the coupling strength, however, we observe a phase transition towards a regime of phase-
coherent mechanical oscillations. This transition and the phase diagram of the system are studied
using a Gutzwiller ansatz for the dynamics of the driven-dissipative system.

Introduction. - Recent experimental progress has
brought optomechanical systems into the quantum
regime: A single mechanical mode interacting with a
laser-driven cavity field has been cooled to the ground
state [1, 2]. Several of these setups, in particular op-
tomechanical crystals, o↵er the potential to be scaled up
to form optomechanical arrays. Applications of such ar-
rays for quantum information processing [3, 4] have been
proposed lately. Given these developments, one is led
to explore quantum many-body e↵ects in optomechani-
cal arrays. In this work, we analyze the nonlinear photon
and phonon dynamics in a homogeneous two-dimensional
optomechanical array. In contrast to earlier works [3–6],
here we study the array’s quantum dynamics beyond a
quadratic Hamiltonian. To tackle the non-equilibrium
many-body problem of this nonlinear dissipative system,
we employ a mean-field approach for the collective dy-
namics. First, we discuss photon statistics in the array,
in particular how the photon blockade e↵ect [7] is al-
tered in the presence of intercellular coupling. The main
part of the article focusses on the transition of the collec-
tive mechanical motion from an incoherent state (due to
quantum noise) to an ordered state with phase-coherent
mechanical oscillations. For these dynamics, the dissipa-
tive e↵ects induced by the optical modes play a crucial
role. On the one hand, they allow the mechanical modes
to settle into self-induced oscillations [8–15] once the op-
tomechanical amplification rate exceeds the intrinsic me-
chanical damping, see Fig. 1(b). On the other hand,
the fundamental quantum noise (e.g. cavity shot noise)
di↵uses the mechanical phases and prevents the mechan-
ical modes from synchronizing. This interplay leads to
an elaborate phase diagram characterizing the transition.
To gain further insight, we develop a semiclassical model
describing the coupling of the mechanical phases and the
influence of quantum noise.

While true long-range order is prohibited for a
two-dimensional system with continuous symmetry,
a Beresinskii-Kosterlitz-Thouless transition towards a
state with quasi-long range order is possible. The ordered
mechanical phase thus resembles the superfluid phase in

mechanical mode

optical mode

intercellular coupling

b

driving strength

a

Figure 1. (a) Optomechanical array with localized mechani-
cal (b̂j) and laser-driven optical modes (âj) at each site. The
optical and mechanical coupling between neighboring sites is
set by J and K, respectively. (b) Onset of self-induced oscil-
lations for an isolated mechanical mode as a function of laser
driving strength (schematic). The classical dynamics (black
solid line) show a bifurcation. Quantum fluctuations blur the
transition (dashed blue line) and generate a mechanical state
whose phase is completely undetermined, see also Fig. 3(b).

two dimensional cold atomic gases [16] or Josephson junc-
tion arrays [17]. Notably, optomechanical arrays com-
bine the tunability of optical systems with the robustness
and durability of an integrated solid-state device. Other
driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [18–23], nonlinear cavity arrays [24, 25] and opti-
cal fibres [26]. In a very recent work and along the lines
of [18], the preparation of long-range order for photonic
modes was proposed using the linear dissipative e↵ects
in an optomechanical array [6]. Our work adds the novel
aspect of a mechanical phase transition to the studies of
driven dissipative many-body systems.
Model. - We study the collective quantum dynamics of

a two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical
mode and a laser driven optical mode that interact via
the radiation pressure coupling at a rate g

0
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â†i âj + âiâ
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• at weak coupling    , self-oscillations are incoherent, 
although the bare frequencies of the oscillators agree!
quantum effect - due to quantum fluctuations

• collective mechanical motion of the array for           

r = 0

r > 0
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into an incoherent mixed state. The reduced density
matrix !̂ðmÞ is predominantly occupied on the diagonal, see
Fig. 3(b), and the Wigner distribution, Wðx;pÞ¼ð1="@Þ$R1
%1hx%yj!̂ðmÞjxþyie2ipy=@dy, has a ringlike shape, reflect-

ing the fact that the mechanical phase is undetermined
[22,23]. Above threshold, the mechanical motion at different
sites becomes phase locked, and the coherence parameter r
reaches a finite value. The emergence of coherence also
becomes apparent from the off-diagonal elements of !̂ðmÞ

[Fig. 3(c)]. The corresponding Wigner function assumes the
shape of a coherent state with a definite phase oscillating in
phase space. Thus, this transition spontaneously breaks the
time-translation symmetry. In a two-dimensional implemen-
tation, true long range order is excluded, but the coherence
between different sites is expected to decay as a power law
with distance.We also note that this transition is the quantum
mechanical analogon of classical synchronization, which
was studied for optomechanical systems in [24–26]. An
important difference is, though, that the classical nonlinear
dynamics was analyzed for an inhomogeneous (with disor-
deredmechanical frequencies) system in the absenceof noise

[24–26], while in our case disorder is only introduced via
fundamental quantum noise. Quantum synchronization has
also been discussed in the context of linear oscillators [27]
and nonlinear cavities [28] recently.
The laser detuning determines both the strength of the

self-oscillations and the influence of the cavity shot noise
on the mechanical motion. It turns out that the diffusion of
the mechanical phases is pronounced close to the onset of
self-oscillations and at the mechanical sideband [29]. As
we will show below, even the coherent coupling between
the mechanical phases (ultimately leading to synchroniza-
tion) is tunable via the laser frequency. As a result, the
synchronization threshold depends nontrivially on the
detuning parameter !, see Fig. 3(a).
Langevin dynamics on finite lattices.—In order to gain

further insight into the coupling and decoherence mecha-
nisms as well as effects of geometry and dimensionality,
we analyze the semi-classical Langevin equations of the
full optomechanical array:

_#i ¼
!
%i"% #

2

"
#i þ ig0j$ij2 þ i

K

z

X

hiji
#j þ

ffiffiffiffi
#

2

s
%#

_$i ¼ i!þ ig0ð#i þ #'
i Þ %

&

2

! "
$i % i$L þ

ffiffiffiffi
&

2

r
%$: (5)

The fluctuating noise forces %'¼$;#ðtÞ mimic the effects
of the zero temperature phonon bath and the cavity shot
noise, respectively. They are independent at each site and
obey h%'i ¼ 0 and h%'ðtÞ%'

'ðt0Þi ¼ (ðt% t0Þ. In this con-
text, h. . .i denotes the average over different realizations of
the stochastic terms. This Langevin approach is equivalent
to the truncated Wigner approximation (see [30] for a
review), and it has shown good qualitative agreement
with the full quantum dynamics for a single optomechan-
ical cell [22,31]. It allows us to treat the effects of quantum
fluctuations at all wavelengths on the spatial phase corre-
lations via numerical simulations. At this point, a full
quantum treatment for sufficiently large systems remains
a challenging problem for future studies.
First, we study the onset of quasi-long-range order in a

finite system. To this end we evaluate the correlations
Cðd ¼ ji% jjÞ ¼ hei’ie%i’ji, where ei’i ¼ #i=j#ij.
Numerical calculations on a 30$ 30 square lattice [see
Fig. 4(a)] indicate that for weak intercellular coupling the
mechanical phases at different sites are uncorrelated even for
small distances d. When increasing the coupling strength,
however, themechanicalmotion becomes correlated over the
whole array with only a slow decrease with distance. The
coupling threshold, here defined by setting a lower bound of
Cð14Þ> 0:01, varies with the coordination number, see
Fig. 4(b). Within the mean-field approximation, i.e., for a
lattice with global coupling of all sites, fluctuations between
neighboring sites and hence the threshold value are under-
estimated. The coupling threshold grows with the quantum
parameter [22], i.e., the ratio of optomechanical coupling and
cavity decay rate, g0=&, see Fig. 4(c): For g0 ( &, single
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FIG. 3 (color online). Transition from the incoherent to the
synchronized (coherent) phase: (a) Mechanical coherence r
[Eq. (4)] as a function of laser detuning! andmechanical coupling
K. At weak coupling, the self-oscillations are incoherent, r ¼ 0,
due to quantum noise. When increasing the coupling strength, the
systems shows a sharp transition towards the ordered regime,
where the mechanical oscillations are phase coherent, r > 0. (b),
(c) Modulus of the density matrix elements (in Fock space) and
Wigner density of the collective mechanical state in the incoherent
(b) and the coherent regime (c), as marked in (a). (d) Mechanical
coherence r as a function of coupling strength K along the dashed
line in (a). The dotted line shows the optical readout of coherence,
i.e., the oscillating component of the photon number hâyâi,
proportional to the intensity of the reflected beam and thus
directly accessible in experiment. g0 ¼ & ¼ 0:3 ", $L ¼ 1:1&,
# ¼ 0:074 ".
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oscillators [7–12]. It is known that an infinite system of
globally coupled classical oscillators spontaneously devel-
ops a synchronized phase. When noise is added, there is
phase transition to the unsynchronized phase [8,11]. We
consider the obvious generalization of Eq. (11) to N iden-
tical oscillators with H ¼ ðV=NÞPm<nðayman þ ama

y
n Þ.

The continuum version was studied in Ref. [42]. The
classical Langevin equations are

_!n ¼ !nð"1 þ 2"2 % 2"2j!nj2Þ % i
V

N

X

m!n

!m

þ #R
n ðtÞ þ i#I

nðtÞ; n ¼ 1; . . . ; N; (14)

with N ! 1. The order parameter is r ¼ ð1=NÞjPn!nj.
The system is unsynchronized when r ¼ 0 and synchro-
nized when r > 0.

In the classical model without noise, both r ¼ 0 and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1

2"2
þ 1

q
are stable steady states for any V > 0 [43]. In

the presence of noise, r ¼ 0 is always stable, while the
synchronized state exists only when V is above some
critical value [Fig. 4(a)]. Thus, the synchronized phase
appears via a first-order phase transition [44]. The critical
value of V increases with noise, i.e., with "2. Figure 4(b)
shows the phase diagram.

To solve the quantum model, we use a self-consistent
mean-field approach, which is exact for infinite N. We use
Eq. (2) withH ¼ Vðhayiaþ haiayÞ and look for the steady
states of the resulting nonlinear master equation [13]. The
quantum order parameter is r ¼ jhaij. In the classical limit,
the steady states and phase boundary agree with the
classical model (Fig. 4). However, near the quantum limit,
the phase transition occurs at a much lower value of V in
the quantum model, implying that synchronization is sig-
nificantly stronger in the quantum model than in the
classical one.

This first-order phase transition differs from the second-
order phase transitions in optomechanical arrays [13] and
polariton condensates [42,45–47].

Experimental implementation.—Consider a trapped ion
with ground state jgi and excited state jei. Let one

motional mode be the relevant harmonic oscillator with
resonance frequency !0. Experiments often do sideband
cooling by laser exciting to jei but detuned by %!o, with
subsequent decay back to jgi [19]. This removes one
phonon at a time: jg; ni ! je; n% 1i ! jg; n% 1i. To ap-
proximately implement Eq. (2), one laser excites to jei but
detuned by þ!o, and simultaneously laser excites to an-
other state je0i but detuned by%2!0 [Fig. 5(a)]. This adds
one and removes two phonons at a time, respectively.
(Negative damping could also come from electric-field
noise in the electrodes [48–50].)
An external drive can be added by applying an rf signal.

Two coupled vdP oscillators can be implemented as fol-
lows. First, implement the above scheme for two motional
modes with similar frequencies. Then drive the blue-
sideband transition of both modes using a third excited
state je00i [Fig. 5(b)]. By detuning from the blue sideband,
this leads to the effective Hamiltonian H ¼ Vðay1a2 þ
a1a

y
2 Þ. One can extend this to multiple modes of several

ions, and thereby study collective dynamics of many
oscillators. To characterize the system, one can directly
measure the Wigner function [51–53]. Experimentally
realizable parameters for 171Ybþ are given in the
Supplemental Material [54].
Conclusion.—We have shown that phase locking is more

robust in the quantum model than in the classical model.
For future work, one can study how quantum fluctuations
affect phase locking in an ensemble of nonidentical oscil-
lators [7–12] or on a complex network [55], as is com-
monly studied in the classical regime. One can also study
how quantum fluctuations affect spatiotemporal solutions
on a lattice, such as plane waves [56], vortices [57], and
phase compactons [58]. Finally, since the classical vdP
oscillator exhibits relaxation oscillations and chaos in the
strong-damping limit [3], it would be interesting to inves-
tigate the quantum oscillator in this limit.
We acknowledge Sarang Gopalakrishnan for useful dis-

cussions. This work was supported by NSF through a grant
to ITAMP.
Note added in proof.—After submission of this paper, we

became aware of Ref. [17], which studies the quantum vdP
oscillator with an external drive.
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FIG. 4 (color online). Numerical phase diagrams for globally
coupled vdP oscillators, comparing the classical model with
N ¼ 3000 (black triangles) with the quantum model (red
circles). (a) Steady states in classical limit with "2 ¼ 0:005"1.
(b) Boundary between synchronized and unsynchronized phases.
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FIG. 5 (color online). Level scheme for an ion with trap
frequency !o. (a) Negative damping comes from exciting the
blue sideband of jgi ! jei (blue arrow). Nonlinear damping
comes from exciting the double red sideband of jgi ! je0i
(red arrow). (b) Two modes can be coupled by off-resonantly
exciting their blue sidebands of jgi ! je00i.
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oscillators [7–12]. It is known that an infinite system of
globally coupled classical oscillators spontaneously devel-
ops a synchronized phase. When noise is added, there is
phase transition to the unsynchronized phase [8,11]. We
consider the obvious generalization of Eq. (11) to N iden-
tical oscillators with H ¼ ðV=NÞPm<nðayman þ ama

y
n Þ.

The continuum version was studied in Ref. [42]. The
classical Langevin equations are
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with N ! 1. The order parameter is r ¼ ð1=NÞjPn!nj.
The system is unsynchronized when r ¼ 0 and synchro-
nized when r > 0.

In the classical model without noise, both r ¼ 0 and
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are stable steady states for any V > 0 [43]. In

the presence of noise, r ¼ 0 is always stable, while the
synchronized state exists only when V is above some
critical value [Fig. 4(a)]. Thus, the synchronized phase
appears via a first-order phase transition [44]. The critical
value of V increases with noise, i.e., with "2. Figure 4(b)
shows the phase diagram.

To solve the quantum model, we use a self-consistent
mean-field approach, which is exact for infinite N. We use
Eq. (2) withH ¼ Vðhayiaþ haiayÞ and look for the steady
states of the resulting nonlinear master equation [13]. The
quantum order parameter is r ¼ jhaij. In the classical limit,
the steady states and phase boundary agree with the
classical model (Fig. 4). However, near the quantum limit,
the phase transition occurs at a much lower value of V in
the quantum model, implying that synchronization is sig-
nificantly stronger in the quantum model than in the
classical one.

This first-order phase transition differs from the second-
order phase transitions in optomechanical arrays [13] and
polariton condensates [42,45–47].

Experimental implementation.—Consider a trapped ion
with ground state jgi and excited state jei. Let one

motional mode be the relevant harmonic oscillator with
resonance frequency !0. Experiments often do sideband
cooling by laser exciting to jei but detuned by %!o, with
subsequent decay back to jgi [19]. This removes one
phonon at a time: jg; ni ! je; n% 1i ! jg; n% 1i. To ap-
proximately implement Eq. (2), one laser excites to jei but
detuned by þ!o, and simultaneously laser excites to an-
other state je0i but detuned by%2!0 [Fig. 5(a)]. This adds
one and removes two phonons at a time, respectively.
(Negative damping could also come from electric-field
noise in the electrodes [48–50].)
An external drive can be added by applying an rf signal.

Two coupled vdP oscillators can be implemented as fol-
lows. First, implement the above scheme for two motional
modes with similar frequencies. Then drive the blue-
sideband transition of both modes using a third excited
state je00i [Fig. 5(b)]. By detuning from the blue sideband,
this leads to the effective Hamiltonian H ¼ Vðay1a2 þ
a1a

y
2 Þ. One can extend this to multiple modes of several

ions, and thereby study collective dynamics of many
oscillators. To characterize the system, one can directly
measure the Wigner function [51–53]. Experimentally
realizable parameters for 171Ybþ are given in the
Supplemental Material [54].
Conclusion.—We have shown that phase locking is more

robust in the quantum model than in the classical model.
For future work, one can study how quantum fluctuations
affect phase locking in an ensemble of nonidentical oscil-
lators [7–12] or on a complex network [55], as is com-
monly studied in the classical regime. One can also study
how quantum fluctuations affect spatiotemporal solutions
on a lattice, such as plane waves [56], vortices [57], and
phase compactons [58]. Finally, since the classical vdP
oscillator exhibits relaxation oscillations and chaos in the
strong-damping limit [3], it would be interesting to inves-
tigate the quantum oscillator in this limit.
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oscillators [7–12]. It is known that an infinite system of
globally coupled classical oscillators spontaneously devel-
ops a synchronized phase. When noise is added, there is
phase transition to the unsynchronized phase [8,11]. We
consider the obvious generalization of Eq. (11) to N iden-
tical oscillators with H ¼ ðV=NÞPm<nðayman þ ama
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The continuum version was studied in Ref. [42]. The
classical Langevin equations are

_!n ¼ !nð"1 þ 2"2 % 2"2j!nj2Þ % i
V

N

X

m!n

!m

þ #R
n ðtÞ þ i#I

nðtÞ; n ¼ 1; . . . ; N; (14)

with N ! 1. The order parameter is r ¼ ð1=NÞjPn!nj.
The system is unsynchronized when r ¼ 0 and synchro-
nized when r > 0.

In the classical model without noise, both r ¼ 0 and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1

2"2
þ 1

q
are stable steady states for any V > 0 [43]. In

the presence of noise, r ¼ 0 is always stable, while the
synchronized state exists only when V is above some
critical value [Fig. 4(a)]. Thus, the synchronized phase
appears via a first-order phase transition [44]. The critical
value of V increases with noise, i.e., with "2. Figure 4(b)
shows the phase diagram.

To solve the quantum model, we use a self-consistent
mean-field approach, which is exact for infinite N. We use
Eq. (2) withH ¼ Vðhayiaþ haiayÞ and look for the steady
states of the resulting nonlinear master equation [13]. The
quantum order parameter is r ¼ jhaij. In the classical limit,
the steady states and phase boundary agree with the
classical model (Fig. 4). However, near the quantum limit,
the phase transition occurs at a much lower value of V in
the quantum model, implying that synchronization is sig-
nificantly stronger in the quantum model than in the
classical one.

This first-order phase transition differs from the second-
order phase transitions in optomechanical arrays [13] and
polariton condensates [42,45–47].

Experimental implementation.—Consider a trapped ion
with ground state jgi and excited state jei. Let one

motional mode be the relevant harmonic oscillator with
resonance frequency !0. Experiments often do sideband
cooling by laser exciting to jei but detuned by %!o, with
subsequent decay back to jgi [19]. This removes one
phonon at a time: jg; ni ! je; n% 1i ! jg; n% 1i. To ap-
proximately implement Eq. (2), one laser excites to jei but
detuned by þ!o, and simultaneously laser excites to an-
other state je0i but detuned by%2!0 [Fig. 5(a)]. This adds
one and removes two phonons at a time, respectively.
(Negative damping could also come from electric-field
noise in the electrodes [48–50].)
An external drive can be added by applying an rf signal.

Two coupled vdP oscillators can be implemented as fol-
lows. First, implement the above scheme for two motional
modes with similar frequencies. Then drive the blue-
sideband transition of both modes using a third excited
state je00i [Fig. 5(b)]. By detuning from the blue sideband,
this leads to the effective Hamiltonian H ¼ Vðay1a2 þ
a1a

y
2 Þ. One can extend this to multiple modes of several

ions, and thereby study collective dynamics of many
oscillators. To characterize the system, one can directly
measure the Wigner function [51–53]. Experimentally
realizable parameters for 171Ybþ are given in the
Supplemental Material [54].
Conclusion.—We have shown that phase locking is more

robust in the quantum model than in the classical model.
For future work, one can study how quantum fluctuations
affect phase locking in an ensemble of nonidentical oscil-
lators [7–12] or on a complex network [55], as is com-
monly studied in the classical regime. One can also study
how quantum fluctuations affect spatiotemporal solutions
on a lattice, such as plane waves [56], vortices [57], and
phase compactons [58]. Finally, since the classical vdP
oscillator exhibits relaxation oscillations and chaos in the
strong-damping limit [3], it would be interesting to inves-
tigate the quantum oscillator in this limit.
We acknowledge Sarang Gopalakrishnan for useful dis-

cussions. This work was supported by NSF through a grant
to ITAMP.
Note added in proof.—After submission of this paper, we

became aware of Ref. [17], which studies the quantum vdP
oscillator with an external drive.
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FIG. 4 (color online). Numerical phase diagrams for globally
coupled vdP oscillators, comparing the classical model with
N ¼ 3000 (black triangles) with the quantum model (red
circles). (a) Steady states in classical limit with "2 ¼ 0:005"1.
(b) Boundary between synchronized and unsynchronized phases.
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FIG. 5 (color online). Level scheme for an ion with trap
frequency !o. (a) Negative damping comes from exciting the
blue sideband of jgi ! jei (blue arrow). Nonlinear damping
comes from exciting the double red sideband of jgi ! je0i
(red arrow). (b) Two modes can be coupled by off-resonantly
exciting their blue sidebands of jgi ! je00i.
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other state je0i but detuned by%2!0 [Fig. 5(a)]. This adds
one and removes two phonons at a time, respectively.
(Negative damping could also come from electric-field
noise in the electrodes [48–50].)
An external drive can be added by applying an rf signal.
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[18]. Nontrivial quantum effects of the static force are an-
alyzed in [19]. Here we consider the dynamics of the model
in presence of additional friction force F = −g2p. Ex-
perimentally such a force can be realized by the Doppler
cooling [20]. The static force f can be also changed con-
tinuously creating acceleration in an optical lattice as it
has been demonstrated experimentally in [21]. The model
can be also implemented with JJs as described in [22].
In this case effective kicks are created by an external ac-
current source, f and p are proportional respectively to
dc-current and voltage drop across JJ, while the friction
force F naturally appears due to finite circuit resistance.
The expression of K and ! via JJ parameters is given
in [22].

The classical dynamics (1) with friction can be exactly
integrated between kicks that gives a dissipative map

p̄ = (1 − γ)p + (1 − γ)K sin x + fγ/g2 ,

x̄ = x + γp/g2 + (γK/g2) sin x + f(g2 − γ)/g4 , (2)

where bars note new values of variables after one map it-
eration and 1 − γ = exp(−g2). Up to parameter rescaling
and shifts in x, p, produced by static force, the map (2)
has the form of Zaslavsky map [23]. Due to contraction in
p the dynamics in phase variable x is close to the circle
map x̄ = x + Keff sin x+ ν [3,4] and demonstrates devil’s
staircase structure in the dependence of average momen-
tum P on f (Fig. 1, top). Steps near rational rotation
numbers P/2π correspond to synchronization with exter-
nal periodic driving inside Arnold tongues. In average the
momentum P = f/g2, as it should be in an equilibrium
between the external and friction forces. Inside the hor-
izontal steps in Figure 1 the change of external driving
frequency (ν ∝ f/g2) does not change the frequency of
the system given by P/2π. Thus the phase of the system
is locked to the phase of external frequency that is called
synchronization. The synchronization takes place inside a
certain frequency interval near resonant rational values of
external frequency where the phase locking is stable. A
size of stability region near each resonance grows with the
perturbation strength K, such a stability diagram is called
Arnold’s tongues (see more detailed definitions in Ref. [3]).
In analogy with this classical picture we will say that the
quantum synchronization takes place when in the quan-
tum system the average frequency P/2π shows horizontal
steps inside which the system frequency is independent of
the external driving frequency. The size of these steps de-
termines the size of quantum Arnold tongues for a given
perturbation strength K and !.

The corresponding quantum dissipative dynamics
is described by the master equation in the Lindblad
form [13]:

˙̂ρ = −i[Ĥ, ρ̂] − 1
2

∑

µ

{L̂†
µL̂µ, ρ̂} +

∑

µ

L̂µρ̂L̂
†
µ, (3)

where ρ̂ is the density operator, { , } denotes the anticom-
mutator, L̂µ are the Lindblad operators, which model the
effects of the environment. Following [24] we assume the

Fig. 1. Dependence of the average momentum P on static force
f at K = 0.8 for γ = 0.25 (left column) and γ = 0.05 (right
column); P is computed over t = 500 map iterations. From top
to bottom: classical case at ! = 0, ! = 0.012, ! = 0.05, ! =
0.5. Initial conditions correspond to one classical trajectory at
x = 0, p/2π = 0.38 for classical dynamics. For the quantum
evolution one quantum trajectory is taken at the same x, p
position with the wave function in the form of minimal coherent
state at given !.

Lindblad operators in the form (µ = 1, 2):

L̂1 = g
∑

n

√
n + 1 |n⟩ ⟨n + 1|,

L̂2 = g
∑

n

√
n + 1 |− n⟩ ⟨−n − 1|. (4)

These operators act on the bases of 2π-periodic eigen-
states of operator n̂ and in the regime of weak coupling
and Markov approximations describe the dissipation force
F = −g2p induced by a bosonic bath at zero temperature.
As in [24] the numerical simulations of quantum jumps
are done for one quantum trajectory using the so-called
Monte Carlo wave function approach [16]. The additional
term with the constant force f is exactly integrated be-
tween jumps leading to a drift of wave function ampli-
tudes in the space of momentum eigenstates n. The total
number of states N is fixed by a condition of keeping all
states with probabilities higher than 10−7. As in [24], from
a wave function ψ(x) of a given quantum trajectory we
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cooling [20]. The static force f can be also changed con-
tinuously creating acceleration in an optical lattice as it
has been demonstrated experimentally in [21]. The model
can be also implemented with JJs as described in [22].
In this case effective kicks are created by an external ac-
current source, f and p are proportional respectively to
dc-current and voltage drop across JJ, while the friction
force F naturally appears due to finite circuit resistance.
The expression of K and ! via JJ parameters is given
in [22].

The classical dynamics (1) with friction can be exactly
integrated between kicks that gives a dissipative map

p̄ = (1 − γ)p + (1 − γ)K sin x + fγ/g2 ,

x̄ = x + γp/g2 + (γK/g2) sin x + f(g2 − γ)/g4 , (2)

where bars note new values of variables after one map it-
eration and 1 − γ = exp(−g2). Up to parameter rescaling
and shifts in x, p, produced by static force, the map (2)
has the form of Zaslavsky map [23]. Due to contraction in
p the dynamics in phase variable x is close to the circle
map x̄ = x + Keff sin x+ ν [3,4] and demonstrates devil’s
staircase structure in the dependence of average momen-
tum P on f (Fig. 1, top). Steps near rational rotation
numbers P/2π correspond to synchronization with exter-
nal periodic driving inside Arnold tongues. In average the
momentum P = f/g2, as it should be in an equilibrium
between the external and friction forces. Inside the hor-
izontal steps in Figure 1 the change of external driving
frequency (ν ∝ f/g2) does not change the frequency of
the system given by P/2π. Thus the phase of the system
is locked to the phase of external frequency that is called
synchronization. The synchronization takes place inside a
certain frequency interval near resonant rational values of
external frequency where the phase locking is stable. A
size of stability region near each resonance grows with the
perturbation strength K, such a stability diagram is called
Arnold’s tongues (see more detailed definitions in Ref. [3]).
In analogy with this classical picture we will say that the
quantum synchronization takes place when in the quan-
tum system the average frequency P/2π shows horizontal
steps inside which the system frequency is independent of
the external driving frequency. The size of these steps de-
termines the size of quantum Arnold tongues for a given
perturbation strength K and !.

The corresponding quantum dissipative dynamics
is described by the master equation in the Lindblad
form [13]:

˙̂ρ = −i[Ĥ, ρ̂] − 1
2

∑

µ

{L̂†
µL̂µ, ρ̂} +

∑

µ

L̂µρ̂L̂
†
µ, (3)

where ρ̂ is the density operator, { , } denotes the anticom-
mutator, L̂µ are the Lindblad operators, which model the
effects of the environment. Following [24] we assume the

Fig. 1. Dependence of the average momentum P on static force
f at K = 0.8 for γ = 0.25 (left column) and γ = 0.05 (right
column); P is computed over t = 500 map iterations. From top
to bottom: classical case at ! = 0, ! = 0.012, ! = 0.05, ! =
0.5. Initial conditions correspond to one classical trajectory at
x = 0, p/2π = 0.38 for classical dynamics. For the quantum
evolution one quantum trajectory is taken at the same x, p
position with the wave function in the form of minimal coherent
state at given !.

Lindblad operators in the form (µ = 1, 2):

L̂1 = g
∑

n

√
n + 1 |n⟩ ⟨n + 1|,

L̂2 = g
∑

n

√
n + 1 |− n⟩ ⟨−n − 1|. (4)

These operators act on the bases of 2π-periodic eigen-
states of operator n̂ and in the regime of weak coupling
and Markov approximations describe the dissipation force
F = −g2p induced by a bosonic bath at zero temperature.
As in [24] the numerical simulations of quantum jumps
are done for one quantum trajectory using the so-called
Monte Carlo wave function approach [16]. The additional
term with the constant force f is exactly integrated be-
tween jumps leading to a drift of wave function ampli-
tudes in the space of momentum eigenstates n. The total
number of states N is fixed by a condition of keeping all
states with probabilities higher than 10−7. As in [24], from
a wave function ψ(x) of a given quantum trajectory we

K = 0.8; ~ = 0.012, 0.05, 0.5

L1 =
X

n=0

p
n+ 1|nihn+ 1|

L2 =
X

n=0

p
n+ 1|� nih�n� 1|

|ni momentum eigenstates

steps persist at small values of
⇒ quantum synchronization 

~
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duality of phase slip junction and Josephson junction:
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the quantum frequency scale @!J. The latter can be
regarded as an effective noise temperature T!

J characteriz-
ing the quantum fluctuations in the circuit (we neglect the
thermal fluctuations assuming sufficiently small tempera-
ture). The condition EJ " T!

J amounts to GJ " e2=@: the
conductance must be high at quantum scale.

The Bloch oscillator is made by connecting in series a
voltage source, a phase-slip junction, and a resistor RS. It
is dual to the Josephson oscillator upon interchanging the
phase and charge [9]. Upon such a transformation, the
Josephson junction is replaced by a phase-slip junction,
the current bias by the voltage bias, and the parallel con-
ductor becomes a series resistor RS. Bloch oscillations
occur provided the bias voltage exceeds the critical voltage
of the junction, Vb > VC ¼ !ES=e. Their frequency,

!B ¼ !IO
e ¼ !

eRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
b $ V2

C

q
, is related to IO, the average

current in the junction. To have a well-defined semiclassi-
cal oscillation, we shall require that the energy accumu-
lated ’ ES by far exceeds the effective noise temperature
T!
B ’ @!B. This gives RS " @=e2: for Bloch oscillations, it

is the resistance that must be high at quantum scale.
Let us now couple the circuits. The main effect of the

coupling is a transfer of oscillating voltage from the
Josephson to the Bloch part, or a transfer of oscillating
current from the Bloch to the Josephson part, whereby the
voltage or current is multiplied with the amplification coef-
ficient Kð!Þ ' Z2=ðZ1 þ Z2Þ. Additionally, the effective
resistance or conductance of the Bloch or Josephson part
is modified, "RS ¼ Z2Z1=ðZ2 þ Z1Þ, "GJ ¼ 1=ðZ2 þ Z1Þ.
In order to preservewell-defined oscillations, we require this
modification to be small, "RS ) RS, "GJ ) GJ.

We estimate the energy scale Ecp associated with the
coupling and synchronization of the oscillations as a prod-
uct of oscillating voltage and current (denoted by a tilde)
in each device times the oscillation period, assuming
!B ’ !J ’ !, Ecp ’ ~IOKð!Þ ~VO=!. It is important to

recall that the oscillating quantities are fundamentally
related to frequency, ~IO ’ e!, ~VO ’ @!=e. With this,
Ecp ’ K@!. A generic estimation for K is K & 1.
Indeed, for real impedances Z1;2 K < 1. In this case Ecp &
T!
B;J and the envisaged synchronization in a general circuit

is destroyed by quantum fluctuations.
To overcome this, we need large K. An active amplify-

ing circuit could provide this but brings extra noise that
increases the fluctuations. The main idea of this Letter is to
use a passive amplifying circuit, an LC oscillator, replac-
ing Z1 with a capacitor C and Z2 with an inductor L
(Fig. 2). With this, Kð!Þ " 1 near the resonant frequency
! ' ðLCÞ1=2. Assuming that a small real part of Z2 gives
rise to a finite quality factor Q of the oscillator, K ¼
½2ð!=!$ 1Þ þ iQ+$1 at ! , !. The maximum value of
K is thus limited by Q, leading to Ecp ’ Q@! " T!

J;B. We
expect the synchronization errors to be related to the
activation over this energy barrier and thus to occur at an
exponentially small rate ’ expð$Ecp=T

!Þ ’ expð$#QÞ, #
being a coefficient of the order of 1. We stress and prove
further that the synchronization takes place in a rather
broad interval of frequencies near !: the Josephson and
Bloch oscillations are thus synchronized with each other
rather than with the LC oscillations.
The effective quality factor in our circuit is in fact

limited by dissipation in RS, GJ. The conditions of non-
obtrusive coupling "GJ ) GJ, "RS ) RS imply that

Q ) minðGJz0; RS=z0Þ, where z0 ¼
ffiffiffiffiffiffiffiffiffiffi
L=C

p
is the effective

impedance of the oscillator. In fact, the corresponding
equality estimates the maximum effective quality factor

Q$1
m ¼ 1=GJz0 þ z0=RS. The choice z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
opti-

mizes Qm to the value Qm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
RSGJ

p
=2.

The synchronization persists in a finite interval of fre-
quencies!BðVbÞ,!JðIbÞ near the line where those satisfy a
given fractional ratio !B=!J ¼ n=m. To estimate the
width of the interval, we compare Ecp with an energy scale
characterizing the frequency deviation, which is either
ð"!B=!BÞES or ð"!J=!JÞES. This leads to ð"!B=!BÞ ’
K=ðRSe

2=@Þ, ð"!J=!JÞ ’ K=ðGJ@=e2Þ. We note that, for
the limiting Q and at frequencies close to !, the width of

FIG. 2. The proposed quantum synchronization circuit. The
resistors Z1;2 of Fig. 1 are replaced with a capacitor and an
inductor, respectively, forming an oscillator. This results in a big
amplification coefficient K " 1 close to the resonant frequency
! enabling the quantum synchronization. The dc output voltage
and current VO, IO manifest the quantized transresistance
R ¼ VO=IO.

FIG. 1. A general linear circuit embedding a phase-slip
(diamond) and a Josephson (cross) junction illustrates the prob-
lem of quantum synchronization of the circuit parts (dashed
boxes) that generate Bloch and Josephson oscillations. The parts
are coupled by the (frequency-dependent) resistors Z1 and Z2.
The circuit is controlled with voltage and current sources Vb, Ib
and provides current and voltage outputs VO, IO. The solution to
the problem is presented in Fig. 2.

PRL 110, 097002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

097002-2

Josephson oscillator = current-biased Josephson junction
Bloch oscillator = voltage-biased phase-slip junction 



Q synchronization of conjugated variables 

A.M. Hriscu and Yu.V. Nazarov, PRL 2013

the quantum frequency scale @!J. The latter can be
regarded as an effective noise temperature T!

J characteriz-
ing the quantum fluctuations in the circuit (we neglect the
thermal fluctuations assuming sufficiently small tempera-
ture). The condition EJ " T!

J amounts to GJ " e2=@: the
conductance must be high at quantum scale.

The Bloch oscillator is made by connecting in series a
voltage source, a phase-slip junction, and a resistor RS. It
is dual to the Josephson oscillator upon interchanging the
phase and charge [9]. Upon such a transformation, the
Josephson junction is replaced by a phase-slip junction,
the current bias by the voltage bias, and the parallel con-
ductor becomes a series resistor RS. Bloch oscillations
occur provided the bias voltage exceeds the critical voltage
of the junction, Vb > VC ¼ !ES=e. Their frequency,

!B ¼ !IO
e ¼ !

eRS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
b $ V2

C

q
, is related to IO, the average

current in the junction. To have a well-defined semiclassi-
cal oscillation, we shall require that the energy accumu-
lated ’ ES by far exceeds the effective noise temperature
T!
B ’ @!B. This gives RS " @=e2: for Bloch oscillations, it

is the resistance that must be high at quantum scale.
Let us now couple the circuits. The main effect of the

coupling is a transfer of oscillating voltage from the
Josephson to the Bloch part, or a transfer of oscillating
current from the Bloch to the Josephson part, whereby the
voltage or current is multiplied with the amplification coef-
ficient Kð!Þ ' Z2=ðZ1 þ Z2Þ. Additionally, the effective
resistance or conductance of the Bloch or Josephson part
is modified, "RS ¼ Z2Z1=ðZ2 þ Z1Þ, "GJ ¼ 1=ðZ2 þ Z1Þ.
In order to preservewell-defined oscillations, we require this
modification to be small, "RS ) RS, "GJ ) GJ.

We estimate the energy scale Ecp associated with the
coupling and synchronization of the oscillations as a prod-
uct of oscillating voltage and current (denoted by a tilde)
in each device times the oscillation period, assuming
!B ’ !J ’ !, Ecp ’ ~IOKð!Þ ~VO=!. It is important to

recall that the oscillating quantities are fundamentally
related to frequency, ~IO ’ e!, ~VO ’ @!=e. With this,
Ecp ’ K@!. A generic estimation for K is K & 1.
Indeed, for real impedances Z1;2 K < 1. In this case Ecp &
T!
B;J and the envisaged synchronization in a general circuit

is destroyed by quantum fluctuations.
To overcome this, we need large K. An active amplify-

ing circuit could provide this but brings extra noise that
increases the fluctuations. The main idea of this Letter is to
use a passive amplifying circuit, an LC oscillator, replac-
ing Z1 with a capacitor C and Z2 with an inductor L
(Fig. 2). With this, Kð!Þ " 1 near the resonant frequency
! ' ðLCÞ1=2. Assuming that a small real part of Z2 gives
rise to a finite quality factor Q of the oscillator, K ¼
½2ð!=!$ 1Þ þ iQ+$1 at ! , !. The maximum value of
K is thus limited by Q, leading to Ecp ’ Q@! " T!

J;B. We
expect the synchronization errors to be related to the
activation over this energy barrier and thus to occur at an
exponentially small rate ’ expð$Ecp=T

!Þ ’ expð$#QÞ, #
being a coefficient of the order of 1. We stress and prove
further that the synchronization takes place in a rather
broad interval of frequencies near !: the Josephson and
Bloch oscillations are thus synchronized with each other
rather than with the LC oscillations.
The effective quality factor in our circuit is in fact

limited by dissipation in RS, GJ. The conditions of non-
obtrusive coupling "GJ ) GJ, "RS ) RS imply that

Q ) minðGJz0; RS=z0Þ, where z0 ¼
ffiffiffiffiffiffiffiffiffiffi
L=C

p
is the effective

impedance of the oscillator. In fact, the corresponding
equality estimates the maximum effective quality factor

Q$1
m ¼ 1=GJz0 þ z0=RS. The choice z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
opti-

mizes Qm to the value Qm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
RSGJ

p
=2.

The synchronization persists in a finite interval of fre-
quencies!BðVbÞ,!JðIbÞ near the line where those satisfy a
given fractional ratio !B=!J ¼ n=m. To estimate the
width of the interval, we compare Ecp with an energy scale
characterizing the frequency deviation, which is either
ð"!B=!BÞES or ð"!J=!JÞES. This leads to ð"!B=!BÞ ’
K=ðRSe

2=@Þ, ð"!J=!JÞ ’ K=ðGJ@=e2Þ. We note that, for
the limiting Q and at frequencies close to !, the width of

FIG. 2. The proposed quantum synchronization circuit. The
resistors Z1;2 of Fig. 1 are replaced with a capacitor and an
inductor, respectively, forming an oscillator. This results in a big
amplification coefficient K " 1 close to the resonant frequency
! enabling the quantum synchronization. The dc output voltage
and current VO, IO manifest the quantized transresistance
R ¼ VO=IO.

FIG. 1. A general linear circuit embedding a phase-slip
(diamond) and a Josephson (cross) junction illustrates the prob-
lem of quantum synchronization of the circuit parts (dashed
boxes) that generate Bloch and Josephson oscillations. The parts
are coupled by the (frequency-dependent) resistors Z1 and Z2.
The circuit is controlled with voltage and current sources Vb, Ib
and provides current and voltage outputs VO, IO. The solution to
the problem is presented in Fig. 2.
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LC coupling Z1 = C; Z2 = L

⇒ synchronization of the two oscillations for n!J = m!B

synchronization domains (n/m)

these intervals may become comparable with the frequency
itself, !!J=!J, !!B=!B ’ 1.

In the remainder of the Letter, we support these quali-
tative estimations with quantitative illustrations.

The adequate quantum description of the circuit involves
two variables: superconducting phase drop at the

Josephson junction !̂ and dimensionless charge q̂ ¼ "
e Q̂

flown in the phase-slip junction. The action is obtained in
the framework of Keldysh action formalism [20] where
variables are doubled !̂ ! !"ðtÞ, q̂ ! q"ðtÞ correspond-
ing to two parts of the Keldysh contour. It is convenient to
use ‘‘classical’’ and ‘‘quantum’’ variables defined as
2!;!d ¼ ð!þ "!&Þ, 2q; qd ¼ ðqþ " q&Þ. The total
Keldysh action

S ¼ SB þ SJ þ Scp þ SN

is contributed by the Bloch and Josephson parts,

SJ ¼
Z

dt
!
2EJ sin! sin

!d

2
& Ib

2e
!d þ _!!d

GJ

4e2

"
; (3)

SB ¼
Z

dt
!
2ES sinq sin

qd
2
& eVb

"
qd þ _qqd

e2RS

"2

"
; (4)

the coupling part

Scp ¼
Z d!

2"

#
!d

&!
#G

4e2
ð _!Þ! þ qd&!

e2#R

"2 ð _qÞ!

þ Kð!Þ
2"

½qd&!ð _!Þ! &!d
&!ð _qÞ!(

$
; (5)

and the noise part SN that is quadratic in qd, !d and
satisfies the fluctuation-dissipation theorem (see Ref. [21]
for concrete expressions). The resulting action is nonlocal
in time and therefore cannot be treated exactly.

The saddle point equations of the Keldysh action [21]
neglect the noise and are the classical circuit-theory equa-
tions. To start with, we study these nonlinear equations.
This approximation gives a good estimation of the posi-
tions and widths of the synchronization domains while
disregarding rounding of large and vanishing of small
domains. We solve the equations numerically at given
Vb, Ib and assess if the solution is periodic. If it is the
case, we note the corresponding n, m. We repeat the
procedure to scan the Vb, Ib plane and to find the synchro-
nization domains. Typical results are presented in Fig. 3.
For this plot, we made (mostly for esthetic reasons) a
symmetric choice of parameters ES ¼ EJ, GJ@"=4e2 ¼
e2RS="@, so that output current and voltage, and
correspondingly the oscillation frequencies, are symmetric
in the plane of Vb and Ib, !BðIb=IC; Vb=VCÞ ¼
!JðVb=VC; Ib=ICÞ. On average, these frequencies are close
to those of uncoupled oscillators, "!BðVbÞ, "!JðIbÞ; the
deviations are mostly due to synchronization. We observe
the domains corresponding to the fractions n=m. They
are centered at the curves where m "!BðVbÞ ¼ n "!JðIbÞ.

The widest domain the one with n ¼ 1, m ¼ 1 and is
centered at the diagonal. The domains with higher n, m
are increasingly narrower, as is also the case in quantum
Hall effect. The parameters are chosen such that the reso-
nant frequency # is achieved at Ib=IC ¼ Vb=VC ¼

ffiffiffi
2

p
,

where the domains are widest. RS ¼ 10"@=e2 and the

oscillator impedance is optimized, z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
, so that

Qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
=2 ¼ 10. In accordance with the above

estimations, the widest synchronization domain spreads
at the scale of# itself. The widths of the domains decrease
at much higher and much lower frequencies "!B, "!J owing
to a decrease of Kð!Þ. More details and finer steps can be
seen in the right-hand panel where the transresistance is
plotted along the cut in the Vb & Ib plane showing a typical
devil’s staircase curve. As a side note, the domains are not
precisely single connected; there is a fine structure of small
‘‘islands’’ of the same n, m near each domain. This struc-
ture is, however, too fine to be resolved at the scale of
the plots.
To address the quantum effects, we restrict ourselves to

narrow synchronization domains where a new long time
scale ’ ð!!B;JÞ&1 ) ð!B;JÞ&1 emerges. Our purpose is to
find the rate of synchronization errors $ with exponential
accuracy (Fig. 4). At this time scale, one can disregard the
dispersion of quantum noise and amplification coefficient
and end up with a local-in-time action which is formally
equivalent to that of a classical system subject to a white
noise. A similar approach has been applied to narrow
Shapiro steps [19]. The slow variables in our case are the
phases $ðtÞ, %ðtÞ of Bloch and Josephson oscillations,
respectively. With those, the time-dependent current
[voltage] is represented as IOðtÞ ¼ IO þ ~IO½ "!Btþ $ðtÞ(
[VOðtÞ ¼ VO þ ~IO½ "!Jtþ%ðtÞ(]. We derive the effective
action in the vicinity of the point in the Ib & Vb plane where
n "!J ¼ m "!B ¼ ! aiming to describe the (n, m) domain
(in the formulas for the action, @ ¼ 1 for compactness).

S ¼ SB þ SJ þ Scp; (6)

FIG. 3 (color online). Left: Synchronization domains (n=m) in
the plane of normalized bias voltage and bias current. Right:
Quantized plateaus of transresistance R ¼ VO=IO along the cut
given by the line in the left-hand figure. Dashed curve:
Continuous transresistance as set by uncoupled Bloch and
Josephson parts, R ¼ ð"@=2e2Þ "!JðIbÞ= "!BðVbÞ.
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LC coupling Z1 = C; Z2 = L

⇒ synchronization of the two oscillations for n!J = m!B

synchronization domains (n/m)

these intervals may become comparable with the frequency
itself, !!J=!J, !!B=!B ’ 1.

In the remainder of the Letter, we support these quali-
tative estimations with quantitative illustrations.

The adequate quantum description of the circuit involves
two variables: superconducting phase drop at the

Josephson junction !̂ and dimensionless charge q̂ ¼ "
e Q̂

flown in the phase-slip junction. The action is obtained in
the framework of Keldysh action formalism [20] where
variables are doubled !̂ ! !"ðtÞ, q̂ ! q"ðtÞ correspond-
ing to two parts of the Keldysh contour. It is convenient to
use ‘‘classical’’ and ‘‘quantum’’ variables defined as
2!;!d ¼ ð!þ "!&Þ, 2q; qd ¼ ðqþ " q&Þ. The total
Keldysh action

S ¼ SB þ SJ þ Scp þ SN

is contributed by the Bloch and Josephson parts,

SJ ¼
Z

dt
!
2EJ sin! sin

!d

2
& Ib

2e
!d þ _!!d

GJ

4e2

"
; (3)

SB ¼
Z

dt
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& eVb
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"
; (4)

the coupling part
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; (5)

and the noise part SN that is quadratic in qd, !d and
satisfies the fluctuation-dissipation theorem (see Ref. [21]
for concrete expressions). The resulting action is nonlocal
in time and therefore cannot be treated exactly.

The saddle point equations of the Keldysh action [21]
neglect the noise and are the classical circuit-theory equa-
tions. To start with, we study these nonlinear equations.
This approximation gives a good estimation of the posi-
tions and widths of the synchronization domains while
disregarding rounding of large and vanishing of small
domains. We solve the equations numerically at given
Vb, Ib and assess if the solution is periodic. If it is the
case, we note the corresponding n, m. We repeat the
procedure to scan the Vb, Ib plane and to find the synchro-
nization domains. Typical results are presented in Fig. 3.
For this plot, we made (mostly for esthetic reasons) a
symmetric choice of parameters ES ¼ EJ, GJ@"=4e2 ¼
e2RS="@, so that output current and voltage, and
correspondingly the oscillation frequencies, are symmetric
in the plane of Vb and Ib, !BðIb=IC; Vb=VCÞ ¼
!JðVb=VC; Ib=ICÞ. On average, these frequencies are close
to those of uncoupled oscillators, "!BðVbÞ, "!JðIbÞ; the
deviations are mostly due to synchronization. We observe
the domains corresponding to the fractions n=m. They
are centered at the curves where m "!BðVbÞ ¼ n "!JðIbÞ.

The widest domain the one with n ¼ 1, m ¼ 1 and is
centered at the diagonal. The domains with higher n, m
are increasingly narrower, as is also the case in quantum
Hall effect. The parameters are chosen such that the reso-
nant frequency # is achieved at Ib=IC ¼ Vb=VC ¼

ffiffiffi
2

p
,

where the domains are widest. RS ¼ 10"@=e2 and the

oscillator impedance is optimized, z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
, so that

Qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=GJ

p
=2 ¼ 10. In accordance with the above

estimations, the widest synchronization domain spreads
at the scale of# itself. The widths of the domains decrease
at much higher and much lower frequencies "!B, "!J owing
to a decrease of Kð!Þ. More details and finer steps can be
seen in the right-hand panel where the transresistance is
plotted along the cut in the Vb & Ib plane showing a typical
devil’s staircase curve. As a side note, the domains are not
precisely single connected; there is a fine structure of small
‘‘islands’’ of the same n, m near each domain. This struc-
ture is, however, too fine to be resolved at the scale of
the plots.
To address the quantum effects, we restrict ourselves to

narrow synchronization domains where a new long time
scale ’ ð!!B;JÞ&1 ) ð!B;JÞ&1 emerges. Our purpose is to
find the rate of synchronization errors $ with exponential
accuracy (Fig. 4). At this time scale, one can disregard the
dispersion of quantum noise and amplification coefficient
and end up with a local-in-time action which is formally
equivalent to that of a classical system subject to a white
noise. A similar approach has been applied to narrow
Shapiro steps [19]. The slow variables in our case are the
phases $ðtÞ, %ðtÞ of Bloch and Josephson oscillations,
respectively. With those, the time-dependent current
[voltage] is represented as IOðtÞ ¼ IO þ ~IO½ "!Btþ $ðtÞ(
[VOðtÞ ¼ VO þ ~IO½ "!Jtþ%ðtÞ(]. We derive the effective
action in the vicinity of the point in the Ib & Vb plane where
n "!J ¼ m "!B ¼ ! aiming to describe the (n, m) domain
(in the formulas for the action, @ ¼ 1 for compactness).

S ¼ SB þ SJ þ Scp; (6)

FIG. 3 (color online). Left: Synchronization domains (n=m) in
the plane of normalized bias voltage and bias current. Right:
Quantized plateaus of transresistance R ¼ VO=IO along the cut
given by the line in the left-hand figure. Dashed curve:
Continuous transresistance as set by uncoupled Bloch and
Josephson parts, R ¼ ð"@=2e2Þ "!JðIbÞ= "!BðVbÞ.
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Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers
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We investigate quantum synchronization theoretically in a system consisting of two cold ions in microtraps.
The ions’ motion is damped by a standing-wave laser while also being driven by a blue-detuned laser which
results in self-oscillation. Working in a nonclassical regime, where these oscillations contain only a few phonons
and have a sub-Poissonian number variance, we explore how synchronization occurs when the two ions are
weakly coupled using a probability distribution for the relative phase. We show that strong correlations arise
between the spin and vibrational degrees of freedom within each ion and find that when two ions synchronize
their spin degrees of freedom in turn become correlated. This allows one to indirectly infer the presence of
synchronization by measuring the ions’ internal state.
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Introduction. Two macroscopic self-oscillators synchronize
when their relative phase locks to a fixed value [1]. Important
studies of synchronization effects were carried out using
lasers [2], with arrays of Josephson junctions [3] and over the
last few years much attention has been devoted to exploring
synchronization in micromechanical oscillators [4]. Recently,
theoretical work has begun to explore synchronization in
the quantum regime [5–14]: the formation of a relative
phase preference between two (or more) weakly coupled
quantum oscillators operating in a regime far from the
classical correspondence limit. Differences between classical
and quantum predictions for the synchronization of van der Pol
oscillators have been identified in the case where the oscillators
are only weakly excited [5]. Nevertheless, many important
questions about quantum synchronization remain open, such
as how it should be quantified and how it can best be probed
experimentally.

Cold ions in microtraps provide a natural platform for
exploring synchronization in the quantum regime [5]. The
generation of self-oscillations in the motional state of ions,
phonon lasing, has already been observed [15]. Furthermore,
precise control of trapping potentials of the individual ions can
now be achieved with microtraps [16] allowing the vibrational
frequencies of individual ions and the coupling between
different ions to be tuned. Here, we investigate synchronization
in two trapped-ion phonon lasers which are pumped in a similar
way to that demonstrated in recent experiments [15].

We identify a parameter regime where phonon lasing of
an individual ion occurs with just a few quanta leading
to a nonclassical state of the phonons and investigate the
emergence of synchronization in this regime when a weak
interion coupling is introduced (weak as it is the slowest time
scale in the system). Our model includes two of the electronic
levels of the ions used in the pumping process (which we
refer to as “spin”), allowing us to uncover strong correlations
which arise between the electronic and vibrational degrees
of freedom of the individual ions. We study the degree of
synchronization as the strength and detuning of the pumping
lasers are varied by calculating the probability distribution
for the relative phase of the ion’s phonons. Lastly we show
that synchronization between the ion’s vibrational degrees of

freedom can lead to correlations between the “spins” of the two
ions. Indeed, observation of spin correlations form a sufficient
and convenient method of inferring synchronization between
two phonon lasers.

Trapped ion setup. A sketch of the system we study is shown
in Fig. 1. Each ion is in a microtrap [16] with frequency ωj=1,2.
The quantized vibrational degrees of freedom (phonons) are
linearly damped at a rate ", which can be realized by laser
cooling techniques [17,18]. Each ion’s spin (internal) degree
of freedom is driven by standing wave lasers with Rabi
frequencies #̃j=1,2, which are set to be resonant with the
first blue sideband transition. The two ions interact weakly
via a dipole interaction which leads to a linear coupling of
their phonons with strength J [16]. In the rotating wave
approximation, the dynamics of the ions is governed by the
master equation,

ρ̇ = −i[H,ρ] +
∑

j=1,2

{
γ

2

∫ 1

−1
dzW (z)D[eiηqj zσ−

j ](ρ)

+"D[aj ](ρ)
}
, (1)

where the two-ion Hamiltonian H , angular distribution for
spontaneous emission W (z), and Lindblad dissipator D[L](ρ)

FIG. 1. (Color online) (a) Trapped-ion setup. Each ion is damped
at a rate " by a standing-wave laser and driven by a blue-detuned laser
of strength #j=1,2. The phonons have a dipole interaction of strength
J and the trap frequencies are ω1 and ω2. (b) Internal electronic states
of each ion. The “spin” states are pumped by a laser blue detuned
by frequency ωj=1,2 and undergo spontaneous emission at a rate γ .
The damping is achieved using a red-detuned drive on a different
electronic transition (not shown) and is eliminated adiabatically.
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We propose a system for observing the correlated phase dynamics of two mesoscopic ensembles of
atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition
induced by pump noise and cavity output coupling. The spectral properties of the superradiant light emitted
from the cavity show that at a critical pump rate the system undergoes a transition from the behavior of two
independent oscillators to the phase locking that is the signature of quantum synchronization.
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Synchronization is an emergent phenomenon that
describes coupled objects spontaneously phase locking to
a common frequency in spite of differences in their natural
frequencies [1]. It was famously observed by Huygens, the
17th century clock maker, in the antiphase synchronization
of two maritime pendulum clocks [2]. Dynamical synchro-
nization is now recognized as ubiquitous behavior occur-
ring in a broad range of physical, chemical, biological, and
mechanical engineering systems [1,3,4].
Theoretical treatments of this phenomenon are often

based on the study of phase models [5,6], and as such have
been applied to an abundant variety of classical systems,
including the collective blinking of fireflies, the beating of
heart cells, and audience clapping. The concept can be
readily extended to systems with an intrinsic quantum
mechanical origin such as nanomechanical resonators [7,8],
optomechanical arrays [9], Josephson junctions [10,11],
and collective atomic recoil lasing [12,13]. When the
number of coupled oscillators is large, it has been dem-
onstrated that the onset of classical synchronization is
analogous to a thermodynamic phase transition [14] and
exhibits similar scaling behavior [15].
Recently, there has been increasing interest in exploring

manifestations in the quantum realm [16–23]. Connections
between quantum entanglement and synchronization have
been revealed in different systems [16–19]. Based on the
Heisenberg uncertainty principle, quantum synchronization
measures have been applied to coupled optomechanical
devices [17]. The effect of quantum noise has been
shown to reduce the synchronization region of a driven
self-sustained oscillator [22]. Since the phenomenon is
inherently nonequilibrium, all of these systems share the
common property of competition between coherent and
incoherent driving and dissipative forces.
In this Letter, we propose a modern-day realization of the

original Huygens experiment [2]. We consider the syn-
chronization of two active atomic clocks coupled to a
common single-mode optical cavity. It has been predicted
that in the regime of steady-state superradiance [24–27] a

neutral atom lattice clock could produce an ultracoherent
optical field with a quality factor (ratio of frequency to
linewidth) that approaches 1018. We show that two such
clocks may exhibit a dynamical phase transition [28–31]
from two disparate oscillators to quantum phase-locked
dynamics. The onset of synchronization at a critical pump
strength is signified by an abruptly increased relative phase
diffusion that diverges in the thermodynamic limit. Besides
being of fundamental importance in nonequilibrium quan-
tum many-body physics, this work could have broad
implications for many practical applications of ultrastable
lasers and precision measurements [24].
The general setup is shown schematically in Fig. 1. Two

ensembles, each containing N two-level atoms with excited
state jei and ground state jgi, are collectively coupled to a
high-quality optical cavity. The transition frequencies of the
atoms in ensembles A and B are detuned from the cavity
resonance by δ=2 and −δ=2, respectively. This could
be achieved by spatially separating the ensembles and
applying an inhomogeneous magnetic field to induce a
differential Zeeman shift. The atoms in both ensembles are
pumped incoherently to the excited state, as could be
realized by driving a transition to a third state that rapidly
decays to jei [26,27].
This system is described by the Hamiltonian in the

rotating frame of the cavity field:

FIG. 1 (color online). Two ensembles of driven two-level atoms
coupled to a single-mode cavity field. The atoms in ensemble
A are detuned above the cavity resonance (dashed line). Ensemble
B contains atoms detuned below the cavity resonance by an
equivalent amount.

PRL 113, 154101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 OCTOBER 2014

0031-9007=14=113(15)=154101(5) 154101-1 © 2014 American Physical Society

M. Xu, D.A. Tieri, E.C. Fine, J.K. Thompson, M.J. Holland, PRL 113, 154101 (2014)

synchronization of two active atomic clocks to a common
single-mode optical cavity



synchronization of ensembles of atoms

Synchronization of Two Ensembles of Atoms

Minghui Xu, D. A. Tieri, E. C. Fine, James K. Thompson, and M. J. Holland
JILA, National Institute of Standards and Technology and Department of Physics,

University of Colorado, Boulder, Colorado 80309-0440, USA
(Received 22 July 2013; revised manuscript received 25 July 2014; published 6 October 2014)

We propose a system for observing the correlated phase dynamics of two mesoscopic ensembles of
atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition
induced by pump noise and cavity output coupling. The spectral properties of the superradiant light emitted
from the cavity show that at a critical pump rate the system undergoes a transition from the behavior of two
independent oscillators to the phase locking that is the signature of quantum synchronization.

DOI: 10.1103/PhysRevLett.113.154101 PACS numbers: 05.45.Xt, 37.30.+i, 42.50.Lc, 64.60.Ht

Synchronization is an emergent phenomenon that
describes coupled objects spontaneously phase locking to
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frequencies [1]. It was famously observed by Huygens, the
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Theoretical treatments of this phenomenon are often
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inherently nonequilibrium, all of these systems share the
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linewidth) that approaches 1018. We show that two such
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strength is signified by an abruptly increased relative phase
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tum many-body physics, this work could have broad
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ensembles, each containing N two-level atoms with excited
state jei and ground state jgi, are collectively coupled to a
high-quality optical cavity. The transition frequencies of the
atoms in ensembles A and B are detuned from the cavity
resonance by δ=2 and −δ=2, respectively. This could
be achieved by spatially separating the ensembles and
applying an inhomogeneous magnetic field to induce a
differential Zeeman shift. The atoms in both ensembles are
pumped incoherently to the excited state, as could be
realized by driving a transition to a third state that rapidly
decays to jei [26,27].
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synchronization of two active atomic clocks to a common
single-mode optical cavity

setting the time derivatives to zero, and the resulting
algebraic equations can be solved exactly. These solutions
are the basis for Figs. 2–4 below.
In order to calculate the photon spectrum, we employ the

quantum regression theorem [35] to obtain the two-time
correlation function of the light field, hâ†ðτÞâð0Þi, where
time 0 denotes an arbitrary time origin in steady state. In the
limit δ ≪ κ, according to Eq. (3), the phase diffusion of
the atoms and light are the same; i.e., hâ†ðτÞâð0Þi∼
hĴþðτÞĴ−ð0Þi. We begin by deriving equations of motion
for hσ̂þA1ðτÞσ̂−B1ð0Þi and hσ̂þB1ðτÞσ̂−B2ð0Þi:

d
dτ

!
hσ̂þA1ðτÞσ̂−B1ð0Þi
hσ̂þB1ðτÞσ̂−B2ð0Þi

"
¼ 1

2

!
X Y
Y X%

"!
hσ̂þA1ðτÞσ̂−B1ð0Þi
hσ̂þB1ðτÞσ̂−B2ð0Þi

"
;

ð8Þ

where X¼ γcðN−1Þhσ̂z1ð0Þi−γc−wþ iδ;Y¼ γcNhσ̂z1ð0Þi.
We have systematically factorized

hσ̂z1ðτÞσ̂þA1ðτÞσ̂−B1ð0Þi ≈ hσ̂z1ð0Þihσ̂þA1ðτÞσ̂−B1ð0Þi;
hσ̂z1ðτÞσ̂þB1ðτÞσ̂−B2ð0Þi ≈ hσ̂z1ð0Þihσ̂þB1ðτÞσ̂−B2ð0Þi: ð9Þ

Similarly, one finds that hσ̂þA1ðτÞσ̂−A2ð0Þi and hσ̂þB1ðτÞσ̂−A1ð0Þi
satisfy the same equation of motion as Eq. (8). The solution
of this coupled set is straightforward and shows that
both hσ̂þA1ðτÞσ̂−B1ð0Þi and thus also hâ†ðτÞâð0Þi evolve in
proportion to the exponential,

exp
#
−
1

2
½wþ γc − ðN − 1Þγchσ̂z1i−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNγchσ̂z1iÞ2 − δ2

q
'τ
%
;

ð10Þ

which we parametrize by exp ½−ðΓþ iΔÞτ=2', where Γ
represents the decay of the first-order correlation and Δ
the modulation frequency. Laplace transformation yields
the photon spectrum, which consists of Lorentzians of
half-width Γ=2 centered at frequencies (Δ=2.
The importance of the two-time correlation function is

that it provides direct access to the correlated phase
dynamics of the two ensembles. The parameter Δ physi-
cally represents the precession frequency of the phase of the
collective mesoscopic dipoles with respect to one another.
In Fig. 2, we show Δ as a function of δ at w ¼ Nγc=2 for
several values of N. For large detuning, Δ approaches δ,
indicating that the dipoles precess independently at their
uncoupled frequency. Below a critical δ, we find Δ to be
zero, indicating synchronization and phase locking.
The fact that this system undergoes a synchronization

transition that is fundamentally quantum mechanical is
evident by the important effect of quantum fluctuations
associated with the repumping process and the cavity
decay. It is shown that quantum noise induces phase
diffusion of the collective atomic dipoles [36], resulting
in an intrinsic linewidth for each ensemble separately that is

given by γc [27]. However, quantum fluctuations also
lead to phase diffusion between the two ensembles, as
quantified by the linewidth Γ of the Lorentzian peak(s).
Therefore, Γ=γc is a dimensionless measure of the degree of
the synchronization between the two ensembles.
This system has three independent control variables, the

detuning δ, the dissipative coupling Nγc, and the pumping
w, so we show Γ=γc on the w-δ parameter plane in Fig. 3(a)

0 0.5 1 1.5
0
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1
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N c

N
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FIG. 2 (color online). Steady-state relative phase precession for
two ensembles as a function of detuning at w ¼ Nγc=2 for N ¼
100 (blue dashed line), N ¼ 500 (purple dot-dashed line), and
N ¼ 106 (red solid line). The straight dotted line is δ ¼ Δ.

FIG. 3 (color online). (a) Nonequilibrium phase diagram of the
quantum synchronization represented by Γ (in units of γc) on the
w-δ parameter plane, where the dissipative coupling Nγc
(N ¼ 104) is fixed. An abrupt peak is observed at the boundary
between the synchronized and unsynchronized phases. (b) As for
(a) but on the w-Nγc parameter plane.
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We study the synchronization of a van der Pol self-oscillator with Kerr anharmonicity to an external drive.
We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple
resonances in both phase locking and frequency entrainment not present in the corresponding classical system.
Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental
realizations of these genuine quantum signatures can be implemented with current technology.

Synchronization of self-oscillators is a subject with great
relevance to several natural sciences [1, 2]. Its exciting fron-
tiers include neuronal synchronization in the human brain
[3, 4], stabilization of power-grid networks [5], as well as
the engineering of high-precision clocks [6, 7]. Recent ad-
vances in nanotechnology will enable experiments with large
arrays of self-oscillators in the near future [8, 9]. Whereas
most research has focused on the classical domain, synchro-
nization in the quantum regime [10] has become a very ac-
tive topic. There has been much recent experimental progress
with micro- and nanomechanical systems [11–15], and theo-
retical proposals for mesoscopic ensembles of atoms [16–18],
lasers [19], cavity optomechanics [20–23], trapped ions [24–
26], arrays of coupled nonlinear cavities [27], and interacting
quantum dipoles [28]. In addition, there are open conceptual
questions on the relation of synchronization to entanglement
or mutual information [29, 30].

Studying a van der Pol oscillator, the most prominent exam-
ple of a self-oscillator, recent theoretical work characterized
how synchronization quantitatively di↵ers between its quan-
tum and classical realization in phase locking [24, 25] as well
as in frequency entrainment [21, 22]. While synchronization
is hindered by quantum noise compared to the classical model
[21, 22], noise is less detrimental [24, 25] than one would ex-
pect from a semiclassical description.

In this article we study self-oscillators for which both the
damping and the frequency is amplitude-dependent. We show
that their synchronization behavior is qualitatively di↵erent in
the quantum and the classical regime. Focusing on a van der
Pol oscillator with Kerr anharmonicity, we find two genuine
quantum signatures. First, while synchronization of one such
oscillator to an external drive is maximal at one particular fre-
quency classically, the corresponding quantum system shows
a tendency to synchronize at multiple frequencies. Using per-
turbation theory in the drive strength, we demonstrate that
these multiple resonances reflect the quantized anharmonic
energy spectrum of the oscillator. We show that these features
are observable in the phase probability distribution if the Kerr
anharmonicity is large compared to the relaxation rates and
the system is in the quantum regime, i.e. the limit cycle ampli-
tudes are small. In the semiclassical limit the energy spectrum
becomes continuous, so that the resonances (and therefore the
quantized energy spectrum) cannot be resolved. Using numer-

Figure 1. Van der Pol self-oscillator with Kerr anharmonicity. (a)
Lowest-lying energy levels. The Kerr anharmonicity K leads to a
level spacing !m + (2n + 1)K increasing with excitation number n.
In this figure the coherent drive (green arrows) is resonant with the
transition between the states |1i and |2i. The wiggly lines denote two
incoherent processes: linear (one-phonon) anti-damping with rate �1
(red arrows) and nonlinear (two-phonon) damping with rate �2 (blue
arrows). (b) The amplitude-dependent damping rate � (blue solid
line) and amplitude-dependent di↵usion constant D (green dashed
line) in the semiclassical equation (3) as a function of the ampli-
tude A. In the limit of large amplitude A, the radial Wigner density
W(A) is a Gaussian with variance �2

A = 3/8 around the zero of �,
i.e. �(A) = 0.

ically exact simulations of the full quantum master equation,
we find a second genuine quantum signature: for strong driv-
ing close to these resonances the steady-state Wigner distribu-
tion exhibits areas of negative density, i.e., the steady state is
nonclassical.

Model.– We consider an anharmonic self-oscillator subject
to an external drive. For concreteness, we will focus on a van
der Pol self-oscillator with Kerr anharmonicity, but the results
we present are generic and can be generalized to other anhar-
monic self-oscillators. In the rotating frame of the drive our
model system is described by the quantum master equation

⇢̇ = �i[H0 + H1, ⇢] + L⇢, (1)

with Hamiltonian H0 = ��a†a + K(a†a)2, drive Hamiltonian
H1 = iE(a � a†), and Lindblad operator L⇢ = �1

2 D[a†]⇢ +
�2
2 D[a2]⇢, where a denotes the annihilation operator for the

oscillator and D[x]⇢ = 2x⇢x† � (x†x⇢ � ⇢x†x). The Hamilto-
nian H0 describes a Kerr oscillator with anharmonic spectrum
characterized by the Kerr parameter K > 0, see Fig. 1 (a). The
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to study the tendency to phase locking, define S =
|hbi|p
hb†bi

3
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d

Figure 2. (a) Phase locking measure S for forced synchronization
and corresponding Wigner distributions. The phase locking behavior
for the quantum system (black solid line) described by ⇤ (defined
in Eq. (2)) can be understood with our perturbative expression (8)
(red bold dotted line). For the parameters of this plot (�2/�1 = 7,
E/�1 = 2.25, K/�1 = 50) approximately three energy levels have
significant occupation, so that two resonances are possible. The blue
dashed line shows the results of the corresponding semi-classical
model ⇤c (defined in Eq. (3)), for which there is only one resonance
as expected. The Wigner distributions for the parameters at the two
peaks (b), (d) and the minimum (c) illustrate the quantum phase lock-
ing behavior of ⇤.

lute value of the measure defined in Ref. [23], i.e.

S =
|hai|
pha†ai

=

���P1m=0

p
m + 1⇢m+1,m

���
pP1

m=0 m⇢m,m
. (7)

In the following we will use (7) as a measure to compare phase
locking in the quantum case (2) and the semiclassical case (3).

For the perturbative steady-state solution (6), we obtain

S (⇢(1)) =

�������

1X

m=0

⇣
⇢(0)

m+1,m+1 � ⇢(0)
mm

⌘ m + 1
pha†ai

E
�m+1,m

�������
. (8)

Equation (8) is one of the main results of this Letter. S (⇢(1)) is
a coherent sum of resonances at � = K(2m+ 1) and width �m.
They can be resolved for large Kerr anharmonicity K � �m
defined in Eq. (5). The number of visible resonances depends
on the number of non-negligible probabilities ⇢(0)

mm in the un-
perturbed steady state ⇢(0). In the quantum limit r ! 0, the
resonances become more pronounced since fewer levels are
occupied. In the limit r ! 1, the energy spectrum becomes
continuous, so that the resonances can no longer be resolved.

With this analytical understanding in mind we now present
exact numerical steady-state results of Eq. (1) obtained with
the steady-state solver of QuTiP [42, 43] which we compare
to the semiclassical approximation described by ⇤c of Eq. (3),
where the steady-state is found by discretizing the Fokker-
Planck equation. In Figs. 2 and 3 the resulting phase-locking
measure S is plotted as a function of the system parameters.
The black solid line in Fig. 2 (a) shows S as a function of the
detuning �/K for �2 = 7�1, E = 2.25�1 and K = 50�1. We

Figure 3. Global behavior of the phase-locking measure S for the
steady state of ⇤ (a, c, e) and ⇤c (b, d, f). In (a) and (b) S is plotted
as a function of � and �2 for E = 2.25�1 and K = 50�1, in (c) and (d)
as a function of � and E for �2 = 5�1 and K = 50�1, and in (e) and (f)
as a function of � and K for �2 = 5�1, E = 2.25�1, and Kmax = 50�1.

find that the position of the resonances is very well described
by Eq. (8) (red bold dotted line). In contrast, the semi-classical
model defined by Eq. (3) would lead to a single, broad reso-
nance (blue dashed line). Figures 2 (b)-(d) show how phase
locking at the two maxima and the one minimum manifests in
the steady-state Wigner distribution W(↵,↵⇤).

Figure 3 (a) illustrates how more resonances at � = K(2m+
1) appear with decreasing �2/�1, as more Fock levels become
populated, while each individual resonance becomes weaker.
The semiclassical approximation depicted in Fig. 3 (b) shows
broadening, but there is one smeared-out resonance, as the en-
ergy distribution is continuous classically. Figure 3 (c) shows
the synchronization tongue, i.e. the synchronization measure
as a function of detuning � for increasing drive E. The ra-
tio �2/�1 is chosen such that three Fock levels have a non-
negligible population in steady state resulting in the two res-
onances for the full quantum description. As expected classi-
cally, the tongue is not split in Fig. 3 (d) showing the solution
for ⇤c. Finally, Figures 3 (e) and (f) illustrate that in the ab-
sence of a Kerr anharmonicity, K = 0, there is only one reso-
nance as all energy gaps are identical for harmonic oscillators.
For increasing K the resonance splits in the quantum system
Fig. 3 (e), while the classical resonance Fig. 3 (f) broadens.

Frequency entrainment and negative Wigner density.– We
now use the power spectrum

P(!) =
Z 1

�1
ei!thb†(t)b(0)idt (9)

to discuss the frequency entrainment [22]. In Fig. 4 (a) we
demonstrate that for a nonzero Kerr anharmonicity K , 0
the frequency entrainment shows resonances at detunings � =
(2n+1)K, similar to the resonances in phase locking discussed
in the previous paragraph. For the parameters of Fig. 4 the
drive is so strong that the dynamics goes beyond first-order
perturbation theory and also diagonal matrix elements of the
density matrix in steady state are changed. As shown in the
inset of Fig. 4 (b), for the detuning at the � = 5K resonance
the redistribution is from even to odd Fock states, which have

�2/�1 = 7, ⌦/�1 = 2.25, K/�1 = 50

non-harmonic level spacing ⇒ 

several synchronization resonances

Wigner distribution
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Figure 2. (a) Phase locking measure S for forced synchronization
and corresponding Wigner distributions. The phase locking behavior
for the quantum system (black solid line) described by ⇤ (defined
in Eq. (2)) can be understood with our perturbative expression (8)
(red bold dotted line). For the parameters of this plot (�2/�1 = 7,
E/�1 = 2.25, K/�1 = 50) approximately three energy levels have
significant occupation, so that two resonances are possible. The blue
dashed line shows the results of the corresponding semi-classical
model ⇤c (defined in Eq. (3)), for which there is only one resonance
as expected. The Wigner distributions for the parameters at the two
peaks (b), (d) and the minimum (c) illustrate the quantum phase lock-
ing behavior of ⇤.

lute value of the measure defined in Ref. [23], i.e.

S =
|hai|
pha†ai

=

���P1m=0

p
m + 1⇢m+1,m

���
pP1

m=0 m⇢m,m
. (7)

In the following we will use (7) as a measure to compare phase
locking in the quantum case (2) and the semiclassical case (3).

For the perturbative steady-state solution (6), we obtain

S (⇢(1)) =

�������

1X

m=0

⇣
⇢(0)

m+1,m+1 � ⇢(0)
mm

⌘ m + 1
pha†ai

E
�m+1,m

�������
. (8)

Equation (8) is one of the main results of this Letter. S (⇢(1)) is
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perturbed steady state ⇢(0). In the quantum limit r ! 0, the
resonances become more pronounced since fewer levels are
occupied. In the limit r ! 1, the energy spectrum becomes
continuous, so that the resonances can no longer be resolved.

With this analytical understanding in mind we now present
exact numerical steady-state results of Eq. (1) obtained with
the steady-state solver of QuTiP [42, 43] which we compare
to the semiclassical approximation described by ⇤c of Eq. (3),
where the steady-state is found by discretizing the Fokker-
Planck equation. In Figs. 2 and 3 the resulting phase-locking
measure S is plotted as a function of the system parameters.
The black solid line in Fig. 2 (a) shows S as a function of the
detuning �/K for �2 = 7�1, E = 2.25�1 and K = 50�1. We

Figure 3. Global behavior of the phase-locking measure S for the
steady state of ⇤ (a, c, e) and ⇤c (b, d, f). In (a) and (b) S is plotted
as a function of � and �2 for E = 2.25�1 and K = 50�1, in (c) and (d)
as a function of � and E for �2 = 5�1 and K = 50�1, and in (e) and (f)
as a function of � and K for �2 = 5�1, E = 2.25�1, and Kmax = 50�1.

find that the position of the resonances is very well described
by Eq. (8) (red bold dotted line). In contrast, the semi-classical
model defined by Eq. (3) would lead to a single, broad reso-
nance (blue dashed line). Figures 2 (b)-(d) show how phase
locking at the two maxima and the one minimum manifests in
the steady-state Wigner distribution W(↵,↵⇤).

Figure 3 (a) illustrates how more resonances at � = K(2m+
1) appear with decreasing �2/�1, as more Fock levels become
populated, while each individual resonance becomes weaker.
The semiclassical approximation depicted in Fig. 3 (b) shows
broadening, but there is one smeared-out resonance, as the en-
ergy distribution is continuous classically. Figure 3 (c) shows
the synchronization tongue, i.e. the synchronization measure
as a function of detuning � for increasing drive E. The ra-
tio �2/�1 is chosen such that three Fock levels have a non-
negligible population in steady state resulting in the two res-
onances for the full quantum description. As expected classi-
cally, the tongue is not split in Fig. 3 (d) showing the solution
for ⇤c. Finally, Figures 3 (e) and (f) illustrate that in the ab-
sence of a Kerr anharmonicity, K = 0, there is only one reso-
nance as all energy gaps are identical for harmonic oscillators.
For increasing K the resonance splits in the quantum system
Fig. 3 (e), while the classical resonance Fig. 3 (f) broadens.

Frequency entrainment and negative Wigner density.– We
now use the power spectrum

P(!) =
Z 1

�1
ei!thb†(t)b(0)idt (9)

to discuss the frequency entrainment [22]. In Fig. 4 (a) we
demonstrate that for a nonzero Kerr anharmonicity K , 0
the frequency entrainment shows resonances at detunings � =
(2n+1)K, similar to the resonances in phase locking discussed
in the previous paragraph. For the parameters of Fig. 4 the
drive is so strong that the dynamics goes beyond first-order
perturbation theory and also diagonal matrix elements of the
density matrix in steady state are changed. As shown in the
inset of Fig. 4 (b), for the detuning at the � = 5K resonance
the redistribution is from even to odd Fock states, which have
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and corresponding Wigner distributions. The phase locking behavior
for the quantum system (black solid line) described by ⇤ (defined
in Eq. (2)) can be understood with our perturbative expression (8)
(red bold dotted line). For the parameters of this plot (�2/�1 = 7,
E/�1 = 2.25, K/�1 = 50) approximately three energy levels have
significant occupation, so that two resonances are possible. The blue
dashed line shows the results of the corresponding semi-classical
model ⇤c (defined in Eq. (3)), for which there is only one resonance
as expected. The Wigner distributions for the parameters at the two
peaks (b), (d) and the minimum (c) illustrate the quantum phase lock-
ing behavior of ⇤.
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locking at the two maxima and the one minimum manifests in
the steady-state Wigner distribution W(↵,↵⇤).
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by Eq. (8) (red bold dotted line). In contrast, the semi-classical
model defined by Eq. (3) would lead to a single, broad reso-
nance (blue dashed line). Figures 2 (b)-(d) show how phase
locking at the two maxima and the one minimum manifests in
the steady-state Wigner distribution W(↵,↵⇤).

Figure 3 (a) illustrates how more resonances at � = K(2m+
1) appear with decreasing �2/�1, as more Fock levels become
populated, while each individual resonance becomes weaker.
The semiclassical approximation depicted in Fig. 3 (b) shows
broadening, but there is one smeared-out resonance, as the en-
ergy distribution is continuous classically. Figure 3 (c) shows
the synchronization tongue, i.e. the synchronization measure
as a function of detuning � for increasing drive E. The ra-
tio �2/�1 is chosen such that three Fock levels have a non-
negligible population in steady state resulting in the two res-
onances for the full quantum description. As expected classi-
cally, the tongue is not split in Fig. 3 (d) showing the solution
for ⇤c. Finally, Figures 3 (e) and (f) illustrate that in the ab-
sence of a Kerr anharmonicity, K = 0, there is only one reso-
nance as all energy gaps are identical for harmonic oscillators.
For increasing K the resonance splits in the quantum system
Fig. 3 (e), while the classical resonance Fig. 3 (f) broadens.

Frequency entrainment and negative Wigner density.– We
now use the power spectrum

P(!) =
Z 1

�1
ei!thb†(t)b(0)idt (9)

to discuss the frequency entrainment [22]. In Fig. 4 (a) we
demonstrate that for a nonzero Kerr anharmonicity K , 0
the frequency entrainment shows resonances at detunings � =
(2n+1)K, similar to the resonances in phase locking discussed
in the previous paragraph. For the parameters of Fig. 4 the
drive is so strong that the dynamics goes beyond first-order
perturbation theory and also diagonal matrix elements of the
density matrix in steady state are changed. As shown in the
inset of Fig. 4 (b), for the detuning at the � = 5K resonance
the redistribution is from even to odd Fock states, which have

�/K �/K
max

�/K

S
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III. GAUSSIAN QUANTUM FLUCTUATIONS ABOUT
SEMICLASSICAL TRAJECTORIES

Our aim in this section is to discuss the quantum fluctuations
about a semiclassical trajectory in a way similar to Ref. [45].
We define the expansion of the bosonic operator al(t) =
αl(t) + ãl , where α(t) = [α1(t), . . . ,αN (t)] is the semiclassical
trajectory, and ˆ̃a = (ã1, . . . ,ãN ) describes the quantum fluc-
tuations. In this work we consider the semiclassical regime,
where the magnitude of αl(t) is much larger than the quantum
fluctuations described by ãl .

Let us consider the displacement operator D̂[α(t)] =
exp [α(t) · ˆ̃a† − α∗(t) · ˆ̃a], which enables us to define coherent
states |αl(t)⟩ = D̂[α(t)]|0l⟩, where |0l⟩ is the vacuum state of
the lth oscillator, and al(t)|αl(t)⟩ = αl(t)|αl(t)⟩ [46]. By using
the expansion of the master equation about the mean-field
α(t) described in the Supplemental Material [47], we obtain a
master equation for the density operator in a comoving frame
ρα(t) = D̂†[α(t)]ρ(t)D̂[α(t)]

ρ̇α ≈ − i
!

[Ĥ (α)
Q ,ρα] + 2

N∑

l=1

[κ1D(ã†
l ) + 4κ2|αl|2D(ãl)]. (2)

In addition, the coherent dynamics of the fluctuations is
governed by the Hamiltonian

H
(α)
Q = i!

N∑

l=1

κ2(α∗
l )2ã2

l + !V

2d

N∑

l=1

l+d∑

m = l − d
m ̸= l

ã
†
l ãm + H.c. (3)

The mean fields appearing in Eq. (3) satisfy the equation of
motion

α̇l(t) = αl(t)(κ1 − 2κ2|αl(t)|2) − i
V

2d

l+d∑

m = l − d
m ̸= l

αm(t) (4)

with a similar equation for α̇∗
l (t). The equations of motion

Eq. (4) resemble a system of coupled Stuart-Landau oscilla-
tors [14]. By solving the equations of motion Eq. (4), one
obtains the time-dependent mean field α(t). Such a mean
field plays a fundamental role in the description of the master
equation Eq. (2). In particular, the mean field drives coherent
effects such as squeezing in Eq. (3) and it determines the
time-dependent rates, which appear in Eq. (2).

IV. CLASSICAL CHIMERA STATE

From our previous discussion, the classical equations of
motion (4) must be satisfied in order to describe the physics
in the comoving frame. In the polar representation αl(t) =
rl(t)eiφl (t) the equations of motion couple amplitude rl(t)
and phase φl(t) of the individual oscillators. We numerically
solve Eq. (4) for a network of N = 50 coupled oscillators
with coupling range d = 10, considering initial conditions
|αl(t0)| ≈ r0, where r0 = 1.58, and phases drawn randomly
from a Gaussian distribution in space [47]. Figure 1 depicts
the time evolution of a classical chimera state. In Fig. 1(a) we
show the space-time representation of the phases φl(t) of the
individual oscillators. One can observe that for a fixed time,
there is a domain of synchronized oscillators that coexists
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FIG. 1. (Color online) Space-time representation of the classical
chimera state for oscillators αl(t) = rl(t)eiφl (t): (a) φl(t) and (b) r2

l (t).
Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50.

with a domain of desynchronized motion, which is a typical
feature of chimera states. Besides the phase, also the amplitude
exhibits chimera dynamics as we show in Fig. 1(b). One can
observe that the width of the synchronized region changes
with time. Similarly, the center of mass of the synchronized
region moves randomly along the ring [11]. In the case of
the uncoupled system with V = 0, the individual oscillators
exhibit a limit cycle with radius r0 =

√
κ1
2κ2

, which is depicted

in the insets of Fig. 2 by the green circle.

V. GAUSSIAN FLUCTUATIONS AND THE WIGNER
FUNCTION

As discussed, the classical equations of motion Eq. (4)
exhibit a chimera state. By using the knowledge we have
about the classical trajectory α(t), we can study the quantum
fluctuations in the comoving frame by solving the master
equation (2). For this purpose, we consider the pure coherent
state as an initial density matrix ρ(t0) =

⊗N
l=1 |αl(t0)⟩⟨αl(t0)|,

where |αl(t0)| ≈ 1.58 and we choose the phases as in the left
panel of Fig. 2. This initial condition corresponds to a fixed

FIG. 2. (Color online) Quantum signatures of the classical
chimera state. (a) Snapshot of the phase chimera depicted in Fig. 1 at
κ1t0 = 3000. We consider an initial density matrix ρ(t0), which is a
tensor product of coherent states centered around the positions of the
individual oscillators as depicted in the insets (Husimi function).
(b) After a short-time interval κ1%t = 0.5, quantum correlations
appear in the form of squeezing (black double arrows in the insets).
Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50.
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obtains the time-dependent mean field α(t). Such a mean
field plays a fundamental role in the description of the master
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effects such as squeezing in Eq. (3) and it determines the
time-dependent rates, which appear in Eq. (2).
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|αl(t0)| ≈ r0, where r0 = 1.58, and phases drawn randomly
from a Gaussian distribution in space [47]. Figure 1 depicts
the time evolution of a classical chimera state. In Fig. 1(a) we
show the space-time representation of the phases φl(t) of the
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feature of chimera states. Besides the phase, also the amplitude
exhibits chimera dynamics as we show in Fig. 1(b). One can
observe that the width of the synchronized region changes
with time. Similarly, the center of mass of the synchronized
region moves randomly along the ring [11]. In the case of
the uncoupled system with V = 0, the individual oscillators
exhibit a limit cycle with radius r0 =

√
κ1
2κ2

, which is depicted

in the insets of Fig. 2 by the green circle.

V. GAUSSIAN FLUCTUATIONS AND THE WIGNER
FUNCTION

As discussed, the classical equations of motion Eq. (4)
exhibit a chimera state. By using the knowledge we have
about the classical trajectory α(t), we can study the quantum
fluctuations in the comoving frame by solving the master
equation (2). For this purpose, we consider the pure coherent
state as an initial density matrix ρ(t0) =

⊗N
l=1 |αl(t0)⟩⟨αl(t0)|,

where |αl(t0)| ≈ 1.58 and we choose the phases as in the left
panel of Fig. 2. This initial condition corresponds to a fixed

FIG. 2. (Color online) Quantum signatures of the classical
chimera state. (a) Snapshot of the phase chimera depicted in Fig. 1 at
κ1t0 = 3000. We consider an initial density matrix ρ(t0), which is a
tensor product of coherent states centered around the positions of the
individual oscillators as depicted in the insets (Husimi function).
(b) After a short-time interval κ1%t = 0.5, quantum correlations
appear in the form of squeezing (black double arrows in the insets).
Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50.
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time t0 = 3000/κ1 in Fig. 1. In the comoving frame, such
initial condition reads ρα(t0) =

⊗N
l=1 |0l⟩⟨0l|.

For convenience, let us write the bosonic operators al =
(q̂l + ip̂l)/

√
2! and ãl = ( ˆ̃ql + i ˆ̃pl)/

√
2! in terms of position

and momentum operators. In terms of complex variables
zl = (ql + ipl)/

√
2!, z̃l = (q̃l + ip̃l)/

√
2!, we define the co-

ordinates zT = (z1, . . . ,zN ) in the laboratory frame and z̃T =
(z̃1, . . . ,z̃N ) in the comoving frame, such that z = α(t) + z̃.
The variables ql,q̃l and pl,p̃l denote position and conjugate
momentum, respectively.

We consider the Wigner representation Wα(R̃,t) of the
density operator ρα(t), where R̃T = (q̃1,p̃1, . . . ,q̃N ,p̃N ). By
using standard techniques of quantum optics [44], the mas-
ter equation (2) can be represented as a Fokker-Planck
equation for the Wigner function, which depends on the
mean-field solution of Eq. (4) and contains information of
the chimera state. In the Supplemental Material [47], we
provide the explicit form of the Fokker-Planck equation
for Wα . Fortunately, even though the coefficients of the
equation are time dependent, one can derive an exact solution
Wα(R̃,t) = (2π )−N (det C )−1/2 exp (− 1

2 R̃T · C −1 · R̃), where
C (t) is the covariance matrix, whose matrix elements Cij =
⟨ 1

2 ( ˆ̃Ri
ˆ̃Rj + ˆ̃Rj

ˆ̃Ri)⟩α − ⟨ ˆ̃Ri⟩α⟨ ˆ̃Rj ⟩α include information about

the correlations between quantum fluctuations ˆ̃R2l−1 = ˆ̃ql and
ˆ̃R2l = ˆ̃pl . The angular brackets ⟨Ô⟩α = tr(ραÔ) denote the

expectation value of an operator Ô calculated with the density
matrix ρα .

In the laboratory frame, the Wigner function is a Gaussian
distribution centered at the classical trajectory α(t), whereas
Wα(R̃,t) is centered at the origin in the comoving frame.
The Husimi function Q(z) = 1

π
⟨z|ρ(t)|z⟩ and the Wigner

function are quasiprobability distributions in phase space,
which are intimately related [44,47]. They allow one to
calculate quantum mechanical averages in a similar way as
classical averages, i.e., as an integral in phase space. In contrast
to the Husimi function, which is positive definite, the Wigner
function can have negative values [44]. In our work, however,
we discuss Gaussian quantum fluctuations and negative values
of the Wigner function are excluded. The insets in the right
panel of Fig. 2 depict the Husimi functions (obtained by using
the Gutzwiller ansatz [31]) of the individual nodes after a
short evolution time $t = 0.5/κ1. One can observe that even
if one prepares the system in a separable state, quantum
fluctuations arise in the form of bosonic squeezing of the
oscillators [44]. In the insets of Fig. 2, the arrows indicate
the direction perpendicular to the squeezing direction for the
individual oscillators. For oscillators within the synchronized
region, the squeezing occurs almost in the same direction. In
contrast, the direction of squeezing is random for oscillators
in the desynchronized region, which reflects the nature of the
chimera state.

VI. QUANTUM SIGNATURES OF A CHIMERA STATE IN
THE COVARIANCE MATRIX

Now let us study the consequences of the exact solution
for the short-time evolution of the Wigner function. Once
we obtain the solution of the equations of motion Eq. (4),
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FIG. 3. (Color online) Quantum fluctuations after a short-time
evolution. Similarly to Fig. 2, we consider an initial density matrix
ρ(ti), which is a tensor product of coherent states centered around
the classical positions of the oscillators. Snapshots of the phase (left
column) and covariance matrices (central column) after short-time
evolution κ1$t = 0.5 of the states: (a) chimera for V = 1.2κ1,
(b) synchronized state for V = 1.6κ1, and (c) desynchronized state
for V = 0.8κ1. Right column: Weighted spatial average %l(t) of the
covariance matrix for the states shown in (a), (b), and (c), respectively.
Parameters d = 10, κ2 = 0.2κ1, and N = 50.

one can find the corresponding covariance matrix C (t). The
left column of Fig. 3 show snapshots of the phases for
3(a) chimera, 3(b) synchronized, and 3(c) desynchronized
mean-field solutions of Eq. (4). The central column of
Fig. 3 depicts the corresponding covariance matrices after
a short evolution time $t = 0.5/κ1. For every plot, we
have initialized the system at time ti as a tensor product of
coherent states |αl(ti)⟩ centered at the positions αl(ti) of the
individual oscillators. As a consequence, the covariance matrix
at the initial time is diagonal C2l−1,2l−1(ti) = ⟨ ˆ̃q2

l ⟩α = !/2
and C2l,2l(ti) = ⟨ ˆ̃p2

l ⟩α = !/2, which reflects the Heisenberg
uncertainty principle because ⟨ ˆ̃ql⟩α = ⟨ ˆ̃pl⟩α = 0.

After a short evolution time, quantum correlations are
built up due to the coupling between the oscillators, and
the covariance matrix exhibits a nontrivial structure, which is
influenced by the mean-field solution. For example, the central
panel of Fig. 3(a) shows a matrix plot of the covariance matrix
corresponding to a chimera state obtained from the same initial
condition as in Fig. (2). The covariance matrix acquires a
block structure, where the upper 40 × 40 block (corresponding
to nodes l = 1, . . . ,20) shows a regular pattern matching
the synchronized region of the chimera state. Similarly, the
lower 60 × 60 block shows an irregular structure, which
corresponds to the desynchronized dynamics of the oscillators
l = 21, . . . ,50. In a similar fashion, Figs. 3(b) and 3(c) show
the matrix C for completely synchronized and desynchronized
states, respectively.

In the case of a chimera state, this coincides with the results
shown in Fig. 2, where the squeezing direction of the oscillators
is related to the classical solution. In order to quantify these

062924-3
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conclusion 

• (approximate) locking of a quantum self oscillator to
an external harmonic drive

• (approximate) spontaneous phase synchronization of two 
or more quantum self oscillators

• collective coherent motion of an array of equal oscillators

• synchronization of two conjugate variables (like charge and 
phase)

• phase locking of two atomic ensembles coupled to a 
single-mode cavity

quantum synchronization can have a variety of meanings:



outlook / open questions 

• quantum synchronization measures

• finitely many oscillators / infinite arrays

• pattern formation in arrays; chimera states

• impact on quantum metrology
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duality of phase slip junction and Josephson junction:
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transforms 

into H = EC q̂
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If the rest of the circuit is modelled by a parallel resistance Rp, it
was predicted that the wire will show a quantum phase transition
at Rp = Rq, being superconducting at Rp < Rq and insulating
otherwise. As predicted11, a Josephson junction shows qualitatively
the same behaviour. The conclusion was then drawn6 that the low-
energy physics of QPSs reduces to that of a Josephson junction in
the same circuit.

We explicitly demonstrate in this paper that the relation
between Josephson tunnelling and QPS in circuits is more
intriguing. They are dual to each other with respect to the exchange
of the canonically conjugated quantum variables, phase and charge.
This duality is exact, in contrast to the widely known12 approximate
self-duality of Josephson junction circuits. Results of ref. 6 are
reproduced by using exact duality and approximate self-duality.
We use exact duality to describe the dynamical response of QPS
in the limit of strong phase slip, where we reveal very favourable
conditions for the observation of Bloch-type oscillations and of a
resonance at the ‘plasma’ frequency.

The duality is developed in two steps. We first compare two
simple circuits (Fig. 1). One is the Cooper-pair box13 with a
Josephson junction that is voltage-biased with voltage V through
a capacitor C. In the other we introduce the QPS junction, an
element that represents the phase-slip process with strength ES, in
a closed loop with an inductor. This is the QPS flux qubit proposed
in ref. 14, but not yet realized in practice. In the Cooper-pair box
the charging energy depends parabolically on the induced charge
ng = CV/2e, for each integer value of the Cooper-pair number n.
The charging energy scale is given by EC = (2e)2/2C. Josephson
coupling EJ mixes states with n and n + 1, lifting degeneracy at
half-integer values of ng. The level splitting at this point equals EJ

provided EJ ≪ EC. This is described by the following hamiltonian:

HJJ = EC(n−ng)
2 −

(
EJ

2

∑

n

|n+1⟩⟨n|+h.c.

)

,

where h.c. represents the hermitian conjugate. In the QPS qubit on
the right of Fig. 1 the inductive energy depends parabolically on the
applied flux Φ with f =Φ/Φ0 at each integer n that now represents
the fluxoid number in the loop. The scale for the inductive energy
is EL =Φ2

0 /2L, where L is the inductance of the loop. QPS coupling
mixes states with adjacent fluxoid numbers and lifts degeneracy at
half-integer values of f . The level splitting at this point equals ES,
provided ES ≪ EL. This implies the following hamiltonian:

HQPS = EL(n− f )2 −
(

ES

2

∑

n

|n+1⟩⟨n|+h.c.

)

. (1)

The diagram as drawn for the Cooper-pair box is only valid when
EC ≫ EJ, where charge is the relevant quantum number. In analogy,
the diagram for the QPS qubit is only valid when EL ≫ ES, the limit
of weak phase slip. Here, phase is the relevant quantum number.
The above hamiltonians are obviously equivalent with respect to
the exchange

EL ⇔ EC;EJ ⇔ ES;ng ⇔ f .

At this stage we have not yet made use of the fact that charge and
phase are canonically conjugated quantum variables.

We will now derive the exact duality from this fact. We start
by considering a Josephson junction in a linear circuit with either
a voltage or a current source (Fig. 2). Any linear circuit can
be presented by an equivalent (frequency-dependent) resistor in
series with (for voltage bias) or parallel to (for current bias) the
junction. A quantum variable describing the circuit is either the
phase across the junction or the continuous number of Cooper
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Figure 2 Dual equivalence of Josephson and QPS junctions in circuits.
a, Current-biased Josephson junction; b, voltage-biased Josephson junction;
c, current-biased QPS junction; d, voltage-biased QPS junction. Circuit a is the exact
dual of circuit d; circuit b is the exact dual of circuit c.

pairs transferred. Those are canonically conjugated variables so that
the corresponding operators of charge (q̂) and phase (φ̂) satisfy
[q̂, φ̂] = −i. In the spirit of the Caldeira–Legett approach15, the
circuit can be described with the following hamiltonian:

Ĥ = EC q̂2 −EJ cos φ̂+ Ĥ env + Ĥ coupling.

Here, Ĥ env represents boson-like environment modes, and the
coupling term Ĥ coupling is different for voltage or current bias,

Ĥ coupling =
{

Φ0
2π

(I − Î r)φ̂ for current bias
−2e(V − V̂ r) q̂ for voltage bias

.

The operators Î r and V̂ r present current and voltage fluctuations,
respectively, in the effective resistor and are linear combinations
of the environment bosons. The coefficients in these linear
combinations are fixed to reproduce the response function of
the environment:

Î r(ω) = h̄

2e
(−iω)Y (ω)φ̂(ω)

V̂ r(ω) = 2e(−iω)Z(ω) q̂(ω).

Here Z(ω) is the frequency-dependent impedance of a serial
resistor, Y (ω) the admittance of a parallel resistor and h̄ is the
reduced Planck constant.

For the hamiltonian of a QPS junction in a circuit, we use the
inductive and QPS energies from (1) to obtain

Ĥ = EL

(2π)2
φ̂

2 −ES cos(2π q̂)+ Ĥ env + Ĥ coupling. (2)

Let us now consider the effect of the canonical transformation
( q̂, φ̂) → (− φ̂/2π,2π q̂) on the hamiltonian (2). Obviously, that
transformation does not change the commutation relations. We
see that it transforms the QPS hamiltonian into the Josephson
hamiltonian with the following parameters:

ES → EJ;EL → EC;I ↔ R−1
q V ;Y (ω) ↔ R−2

q Z(ω). (3)

Double-sided arrows mean that the transformation exchanges
current and voltage bias and series and parallel resistors (Fig. 2).
This is the main exact result of our work. These duality relations
allow us to exactly map any known result concerning transport
characteristics of Josephson junctions in a circuit to dual transport
characteristics of QPS junctions in the dual circuit.
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even more general

H =

EL

(2⇡)2
ˆ�2 � ES cos(2⇡q̂)


