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Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance

in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon

nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled

through an optical cavity radiation field. The tunability of the optical coupling between the oscillators

enables one to externally control the dynamics and switch between coupled and individual oscillation

states. These results pave a path toward reconfigurable synchronized oscillator networks.
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Synchronization processes are part of our daily experi-
ences as they occur widely in nature, for example, in firefly
colonies, pacemaker cells in the heart, nervous systems,
and circadian cycles [1]. Synchronization is also of great
technological interest since it provides the basis for timing,
signal processing, and microwave communication [2] and
could enable novel computing and memory concepts [3,4].
At the nanoscale, synchronization mechanisms have the
potential to be integrated with current nanofabrication
capabilities and to enable scaling up to network sizes
[5–8]. Among the major challenges with synchronized
oscillators on the nanoscale are neighborhood restriction
and nonconfigurable coupling which limit the control, the
footprint and possible topologies of complex oscillator
networks [9–13]. Recently, it is proposed that using cavity
field coupled oscillators could form an all-to-all coupling
that could overcome this restriction [10,14]. Here we dem-
onstrate the synchronization of two dissimilar silicon
nitride (Si3N4) self-sustaining optomechanical oscillators
coupled only through the optical cavity radiation field as
opposed to coupling through a structural contact or electro-
static interaction [15,16]. We externally control the dynam-
ics and switch between coupled and individual oscillation
states through tuning the optical coupling between the
oscillators. These results pave a path toward realizing
massive optomechanical oscillator arrays [17–19].

Optomechanical oscillators (OMOs) consist of cavity
structures that support both tightly confined optical modes
and long-living (high quality factor) mechanical modes
[20,21]. When optomechanical cavities are driven by a
blue detuned continuous wave (cw) laser, the radiation
pressure from the light can amplify the mechanical motion
via the dynamical backaction between the optical and
mechanical modes [22]. Above a certain threshold laser
power this optomechanical amplification can overcome the
intrinsic mechanical damping; the device evolves from an

optomechanical resonator to a self-sustaining OMO [11].
The laser signal fraction that is transmitted, or reflected,
from the optomechanical cavity becomes deeply modulated
at the mechanical frequency of the oscillator [20,23,24].
Recently it has been predicted that the mechanical oscil-

lations of a pair of OMOs could be synchronized if the
OMOs are optically coupled as opposed to mechanically
coupled [14,25]. Here we experimentally demonstrate the
synchronization of two optically coupled OMOs [right (R)
and left (L)] with different mechanical frequencies. The
optical coupling means the mechanical displacement of
one OMO will lead to a force on the other OMO through
the optical field. This force is responsible for the effective

FIG. 1 (color). Design of the optically coupled optomechan-
ical oscillators (OMOs). (a) Schematic of the device illustrating
the mechanical mode profile and the optical whispering gallery
mode. (b) False-colored scanning electron micrograph (SEM)
image of the OMOs with chrome heating pads (blue) for optical
tuning by top illumination. (c),(d) The symmetric (S) and anti-
symmetric (AS) coupled optical supermodes. The deformation
illustrates the mechanical mode that is excited by the optical
field. (e) The dynamics of the coupled OMOs can be approxi-
mated by a lumped model for two optically coupled damped-
driven nonlinear harmonic oscillators.
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mutual coupling via the cavity field. Figure 2(a) displays
the evolution of the rf power spectrum of the transmitted
probe laser light (the pump laser is blue detuned at!0=! ¼
0:3, where !0 is the detuning between the laser and cavity
frequency, and ! is the cavity linewidth). At the lowest
pump powers the thermomechanical motion of each reso-
nator is visible as two lines at 4.0 and 6.5 MHz, respec-
tively. Upon increasing the pump power in this first regime,

the backaction amplifies their Brownian motion. Also, the
optical spring effect [19] is visible as an increase in
the resonance frequencies. Both effects are stronger in
the 4 MHz resonator since it is in the buckled down state
[15]. The difference in backaction confirms that optical
backaction is stronger than photothermal effects as the
latter would be the same on both resonators [20].
When the pump is increased beyond "2:7 dBm, the

optomechanical gain fully compensates the mechanical
damping of the resonator with lower threshold, which we
will label as "1", which starts to self-oscillate. This demar-
cates the onset of regime II, which ranges from "2:7 to
0.2 dBm. Yet, even though the oscillation amplitude of
resonator 1 increased dramatically, the thermal motion of
resonator 2 is undisturbed and is still clearly visible in
Figs. 2(a) and 2(b). Note that the frequency difference
between the two resonators (2.5 MHz) is much larger
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FIG. 2 (color online). (a) The evolution of the rf power spec-
trum of the transmitted light as the pump power increases.
(b)–(e) Cuts through panel (a) at the indicated pump power
when both resonators are in a thermal state regime I, (b);
(c) one resonator is in thermal motion while the other resonator
experiences regenerative oscillations (regime II); (d) the chaotic
regime (III) and (e) the two resonators are synchronized (regime
IV). The insets schematically show the energy of resonators 1
(left) and 2 (right); dots correspond to small thermal motion, and
lines to large oscillations.
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FIG. 1 (color online). (a) Micrograph of a racetrack cavity
with two 110 nm# 500 nm# 10 "m suspended portions as
nanomechanical resonators. Insets show scanning electron mi-
crographs of the mechanical resonators in buckled down (left)
and buckled up (right) state. (b),(c) thermal noise spectra in the
up-up (b) down-up state (c). (d) The measurement setup with a
weak probe laser, and a pump.
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where Q is the quality factor of the driven response of
the resonators and ω0 the linear resonance frequency of
the NEMS device when under driven excitation, and t
is the real time in seconds. In the slow time dynamics,
feedback loop time delays are represented by a phase
shift. The resulting equations for the amplitudes a1;2 for
each oscillator and phase difference φ between them
are [29]

a01;2 ≡
da1;2
dT

¼ − a1;2
2

þ 1

2
∓ β

2
a2;1 sin φ (1)

φ0 ≡ dφ
dT

¼ Δω − ða21 − a22Þ
!
α − β

2a1a2
cos φ

"
; (2)

where −, þ corresponds to a1, a2, respectively. Here Δω
is the difference between the resonant frequencies of the
devices, α is the measure of frequency pulling (which is
the increase in frequency proportional to the square of
the amplitude), and β is the coupling strength. Note that
our coupling here is not dissipative, but reactive, in
contrast to most studies of synchronization to date [31].
Reactive coupling inevitably leads to the amplitudes
playing a key role in the synchronization, as previously
shown theoretically [31,32]. The parameters Δω, α, and
β, which we call the synchronization parameters, set the
dynamics of thesystem: thestable fixedpointsofEqs. (1)and
(2), for example,yieldsynchronizedstates.Theseparameters
are expressed in units of the devices’ resonance line
width, ω0=Q.

To construct an experimentwith independent control of the
synchronization parameters we use the setup shown in Fig. 1.
The NEMS devices are two piezoelectrically actuated, pie-
zoresistively detected [14], doubly clamped beams 10 μm
long, 210 nm thick, and 400 nm wide. In the oscillator loop,
the signal is strongly amplified (gain stage, g) into a diode
limiter (saturation stage, s) in order to ensure the feedback
signal to the beam is of constant magnitude. Therefore, the
feedback signal is a strongly nonlinear function of the device
displacement [19]. On the other hand, the coupling loop is
kept linear; the feedback is directly proportional to the
displacement over the full range of experimental values.
For the oscillator loop, the signal is fed back in phase with
the beams velocity. For the coupling loop, this signal is fed
into the beams in phase with the displacement. This causes
the coupling loop to be reactive and the oscillator loop to
be dissipative. The synchronization parameters are each
controlled by a dc voltage. Adjusting oscillator feedback
saturation controls frequency pulling α, adjusting coupling
feedback amplitudes controls coupling β, and adjusting
piezovoltage controls frequency detuning Δω [29].
This system is designed to be integrable within CMOS

technologies. The system consists of transistor amplifiers,
saturation diodes, direction couplers (capacitors), and
phase shifters. Here we use adjustable attenuators; these
may also be implemented with adjustable amplifiers. The
phase shifters can be implemented with fixed resistance-
capacitance filters. However, we note that if we
measure the piezoelectric response in addition to the
piezoresistive response, we are able to directly capture
both the in-phase and out-of-phase response of the oscil-
lators. Since all parameters are controlled with dc voltages,
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FIG. 1 (color online). Simplified circuit schematic for experiment. Each NEMS resonator (colored SEM micrograph) is embedded in
two feedback loops: one is used for creating oscillations in each resonator, and the other creates coupling between the oscillators. The
attenuators after each limiter (single heavy line boxes) sets the level of oscillation, and constitutes a means to control the frequency
pulling. In the coupling loop the signal is amplified so that an attenuator (double heavy line boxes) adjusts the signal level in the common
loop, thereby setting the coupling strength. The frequency difference is controlled by adjusting the stress induced in the left resonator by
the piezovoltage.
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our system offers the possibility of massive arrays with
individual control over constituent elements.
We begin by looking at the small coupling limit, with

β < 0.1, where experiment can be compared to analytical
predictions. In that case, the amplitudes of the two
oscillators stay near unity, so Eqs. (1) and (2) become

a1;2 ¼ 1∓β sin φ; (3)

φ0 ¼ Δωþ 4αβ sin φ; (4)

where Eq. (4) is the Adler equation [33]. Note that even
though Eq. (4) is of the same form as the one Adler used to
study injection locking, it describes the mutual synchro-
nization of two oscillators [29]. When the oscillators are
unsynchronized, the solution to Eq. (4) can be expressed as

φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2 − ð4αβÞ2

q
: (5)

In the synchronization regime (φ0 ¼ 0), as the amplitudes
stay near unity, a linear relationship between the oscillation
amplitudes and the frequency difference is found from
Eqs. (3) and (4),

∂a1;2
∂Δω ¼ % 1

4α
; (6)

where 1,2 corresponds to þ, −, respectively. Equation (6)
holds explicitly in the synchronization regime.
In Fig. 2, φ0 is the oscillator frequency difference in units

of the resonance width. The plots show synchronization
between the two coupled oscillators, with remarkable
agreement between Eqs. (5,6) and the experiment. The
oscillator amplitudes change in order to adjust the oscillator
frequencies, demonstrating the importance of frequency
pulling in reactively coupled oscillators.
In addition to control of the detuning through a wide

range of values (shown in Fig. 2), we are able to modify
both the frequency pulling and coupling, to study the
parameter space for synchronization. Figure 3 shows the
synchronization parameter space for three levels of fixed
detuning (Δω ¼ 0.6, 1, 2) as coupling and frequency
pulling α are varied. The red border is the data with
attractive (ATT) coupling [β < 0 in Eqs. (1,2)] and green
with repulsive (REP) coupling [β > 0 in Eqs. (1,2)]. These
lines represent the boundaries of the transition between
synchronized and unsynchronized states when sweeping
to higher values of coupling, i.e., from left to right in
Fig. 3. This transition is defined by a change to a measured
oscillator frequency difference φ0 < 0.05.
In general, analytical solutions to Eqs. (1) and (2) cannot be

found. Therefore, we perform two numerical studies and
compare them to the experiment.We performa linear stability
analysis (LSA) [34] of Eqs. (1) and (2) with the orange and
purple dashed lines in Fig. 3 showing the stability boundaries.
The LSA boundaries define only where the synchronized
states are stable, and so there may be unsynchronized stable
states coexisting within these boundaries.

We also perform a time domain simulation of Eqs. (1)
and (2), (with β > 0) using initial conditions of amplitudes
fixed at 1 and random phases. At each point in paramater
space this time domain simulation gives a basin of
attraction for stabilizing in either an unsynchronized or a
synchronized state (from an initially unsynchronized state).
For each value of the parameters plotted in Fig. 3, we run
100 such simulations and assign a synchronization value of
0 for unsynchronized and 1 for synchronized. The average
value of these 100 simulations is represented by a linear
gradient between white and blue for 0 and 1, respectively.
Note that the parameters space which synchronizes (blue)
lies within the LSA-1 boundaries, and there is a slight
increase in probability for synchronizing inside the border
of the LSA-2 boundary. However, the initial amplitudes
of our time-domain simulation are not random. The
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FIG. 2 (color online). Synchronization in the limit of small
coupling described by Eqs. (5) and (6) with a frequency pulling
α ¼ 1.25. (a) Experimental data (points) are compared against
theoretical predictions (lines) for the amplitudes of the two oscil-
latorsas the systemmoves throughsynchronization; thedependence
upon detuning Δω for a coupling of β ¼ 0.068 is shown. The
synchronization regime is shown by orange shading. (b) Data and
predictions for the frequency differenceφ0 for three different values
of coupling. The set of data with the largest value of coupling
β ¼ 0.068 corresponds to the amplitude data from the upper plot.
Frequency locking (synchronization regime) is shownwhere values
φ0 ¼ 0 occur. SR 0.012, SR 0.044, SR 0.068 denote the synchro-
nization regimes (shaded regions) for the three couplings.
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where Q is the quality factor of the driven response of
the resonators and ω0 the linear resonance frequency of
the NEMS device when under driven excitation, and t
is the real time in seconds. In the slow time dynamics,
feedback loop time delays are represented by a phase
shift. The resulting equations for the amplitudes a1;2 for
each oscillator and phase difference φ between them
are [29]

a01;2 ≡
da1;2
dT

¼ − a1;2
2

þ 1

2
∓ β

2
a2;1 sin φ (1)

φ0 ≡ dφ
dT

¼ Δω − ða21 − a22Þ
!
α − β

2a1a2
cos φ

"
; (2)

where −, þ corresponds to a1, a2, respectively. Here Δω
is the difference between the resonant frequencies of the
devices, α is the measure of frequency pulling (which is
the increase in frequency proportional to the square of
the amplitude), and β is the coupling strength. Note that
our coupling here is not dissipative, but reactive, in
contrast to most studies of synchronization to date [31].
Reactive coupling inevitably leads to the amplitudes
playing a key role in the synchronization, as previously
shown theoretically [31,32]. The parameters Δω, α, and
β, which we call the synchronization parameters, set the
dynamics of thesystem: thestable fixedpointsofEqs. (1)and
(2), for example,yieldsynchronizedstates.Theseparameters
are expressed in units of the devices’ resonance line
width, ω0=Q.

To construct an experimentwith independent control of the
synchronization parameters we use the setup shown in Fig. 1.
The NEMS devices are two piezoelectrically actuated, pie-
zoresistively detected [14], doubly clamped beams 10 μm
long, 210 nm thick, and 400 nm wide. In the oscillator loop,
the signal is strongly amplified (gain stage, g) into a diode
limiter (saturation stage, s) in order to ensure the feedback
signal to the beam is of constant magnitude. Therefore, the
feedback signal is a strongly nonlinear function of the device
displacement [19]. On the other hand, the coupling loop is
kept linear; the feedback is directly proportional to the
displacement over the full range of experimental values.
For the oscillator loop, the signal is fed back in phase with
the beams velocity. For the coupling loop, this signal is fed
into the beams in phase with the displacement. This causes
the coupling loop to be reactive and the oscillator loop to
be dissipative. The synchronization parameters are each
controlled by a dc voltage. Adjusting oscillator feedback
saturation controls frequency pulling α, adjusting coupling
feedback amplitudes controls coupling β, and adjusting
piezovoltage controls frequency detuning Δω [29].
This system is designed to be integrable within CMOS

technologies. The system consists of transistor amplifiers,
saturation diodes, direction couplers (capacitors), and
phase shifters. Here we use adjustable attenuators; these
may also be implemented with adjustable amplifiers. The
phase shifters can be implemented with fixed resistance-
capacitance filters. However, we note that if we
measure the piezoelectric response in addition to the
piezoresistive response, we are able to directly capture
both the in-phase and out-of-phase response of the oscil-
lators. Since all parameters are controlled with dc voltages,
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FIG. 1 (color online). Simplified circuit schematic for experiment. Each NEMS resonator (colored SEM micrograph) is embedded in
two feedback loops: one is used for creating oscillations in each resonator, and the other creates coupling between the oscillators. The
attenuators after each limiter (single heavy line boxes) sets the level of oscillation, and constitutes a means to control the frequency
pulling. In the coupling loop the signal is amplified so that an attenuator (double heavy line boxes) adjusts the signal level in the common
loop, thereby setting the coupling strength. The frequency difference is controlled by adjusting the stress induced in the left resonator by
the piezovoltage.
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our system offers the possibility of massive arrays with
individual control over constituent elements.
We begin by looking at the small coupling limit, with

β < 0.1, where experiment can be compared to analytical
predictions. In that case, the amplitudes of the two
oscillators stay near unity, so Eqs. (1) and (2) become

a1;2 ¼ 1∓β sin φ; (3)

φ0 ¼ Δωþ 4αβ sin φ; (4)

where Eq. (4) is the Adler equation [33]. Note that even
though Eq. (4) is of the same form as the one Adler used to
study injection locking, it describes the mutual synchro-
nization of two oscillators [29]. When the oscillators are
unsynchronized, the solution to Eq. (4) can be expressed as

φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2 − ð4αβÞ2

q
: (5)

In the synchronization regime (φ0 ¼ 0), as the amplitudes
stay near unity, a linear relationship between the oscillation
amplitudes and the frequency difference is found from
Eqs. (3) and (4),

∂a1;2
∂Δω ¼ % 1

4α
; (6)

where 1,2 corresponds to þ, −, respectively. Equation (6)
holds explicitly in the synchronization regime.
In Fig. 2, φ0 is the oscillator frequency difference in units

of the resonance width. The plots show synchronization
between the two coupled oscillators, with remarkable
agreement between Eqs. (5,6) and the experiment. The
oscillator amplitudes change in order to adjust the oscillator
frequencies, demonstrating the importance of frequency
pulling in reactively coupled oscillators.
In addition to control of the detuning through a wide

range of values (shown in Fig. 2), we are able to modify
both the frequency pulling and coupling, to study the
parameter space for synchronization. Figure 3 shows the
synchronization parameter space for three levels of fixed
detuning (Δω ¼ 0.6, 1, 2) as coupling and frequency
pulling α are varied. The red border is the data with
attractive (ATT) coupling [β < 0 in Eqs. (1,2)] and green
with repulsive (REP) coupling [β > 0 in Eqs. (1,2)]. These
lines represent the boundaries of the transition between
synchronized and unsynchronized states when sweeping
to higher values of coupling, i.e., from left to right in
Fig. 3. This transition is defined by a change to a measured
oscillator frequency difference φ0 < 0.05.
In general, analytical solutions to Eqs. (1) and (2) cannot be

found. Therefore, we perform two numerical studies and
compare them to the experiment.We performa linear stability
analysis (LSA) [34] of Eqs. (1) and (2) with the orange and
purple dashed lines in Fig. 3 showing the stability boundaries.
The LSA boundaries define only where the synchronized
states are stable, and so there may be unsynchronized stable
states coexisting within these boundaries.

We also perform a time domain simulation of Eqs. (1)
and (2), (with β > 0) using initial conditions of amplitudes
fixed at 1 and random phases. At each point in paramater
space this time domain simulation gives a basin of
attraction for stabilizing in either an unsynchronized or a
synchronized state (from an initially unsynchronized state).
For each value of the parameters plotted in Fig. 3, we run
100 such simulations and assign a synchronization value of
0 for unsynchronized and 1 for synchronized. The average
value of these 100 simulations is represented by a linear
gradient between white and blue for 0 and 1, respectively.
Note that the parameters space which synchronizes (blue)
lies within the LSA-1 boundaries, and there is a slight
increase in probability for synchronizing inside the border
of the LSA-2 boundary. However, the initial amplitudes
of our time-domain simulation are not random. The
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FIG. 2 (color online). Synchronization in the limit of small
coupling described by Eqs. (5) and (6) with a frequency pulling
α ¼ 1.25. (a) Experimental data (points) are compared against
theoretical predictions (lines) for the amplitudes of the two oscil-
latorsas the systemmoves throughsynchronization; thedependence
upon detuning Δω for a coupling of β ¼ 0.068 is shown. The
synchronization regime is shown by orange shading. (b) Data and
predictions for the frequency differenceφ0 for three different values
of coupling. The set of data with the largest value of coupling
β ¼ 0.068 corresponds to the amplitude data from the upper plot.
Frequency locking (synchronization regime) is shownwhere values
φ0 ¼ 0 occur. SR 0.012, SR 0.044, SR 0.068 denote the synchro-
nization regimes (shaded regions) for the three couplings.
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where Q is the quality factor of the driven response of
the resonators and ω0 the linear resonance frequency of
the NEMS device when under driven excitation, and t
is the real time in seconds. In the slow time dynamics,
feedback loop time delays are represented by a phase
shift. The resulting equations for the amplitudes a1;2 for
each oscillator and phase difference φ between them
are [29]

a01;2 ≡
da1;2
dT

¼ − a1;2
2

þ 1

2
∓ β

2
a2;1 sin φ (1)

φ0 ≡ dφ
dT

¼ Δω − ða21 − a22Þ
!
α − β

2a1a2
cos φ

"
; (2)

where −, þ corresponds to a1, a2, respectively. Here Δω
is the difference between the resonant frequencies of the
devices, α is the measure of frequency pulling (which is
the increase in frequency proportional to the square of
the amplitude), and β is the coupling strength. Note that
our coupling here is not dissipative, but reactive, in
contrast to most studies of synchronization to date [31].
Reactive coupling inevitably leads to the amplitudes
playing a key role in the synchronization, as previously
shown theoretically [31,32]. The parameters Δω, α, and
β, which we call the synchronization parameters, set the
dynamics of thesystem: thestable fixedpointsofEqs. (1)and
(2), for example,yieldsynchronizedstates.Theseparameters
are expressed in units of the devices’ resonance line
width, ω0=Q.

To construct an experimentwith independent control of the
synchronization parameters we use the setup shown in Fig. 1.
The NEMS devices are two piezoelectrically actuated, pie-
zoresistively detected [14], doubly clamped beams 10 μm
long, 210 nm thick, and 400 nm wide. In the oscillator loop,
the signal is strongly amplified (gain stage, g) into a diode
limiter (saturation stage, s) in order to ensure the feedback
signal to the beam is of constant magnitude. Therefore, the
feedback signal is a strongly nonlinear function of the device
displacement [19]. On the other hand, the coupling loop is
kept linear; the feedback is directly proportional to the
displacement over the full range of experimental values.
For the oscillator loop, the signal is fed back in phase with
the beams velocity. For the coupling loop, this signal is fed
into the beams in phase with the displacement. This causes
the coupling loop to be reactive and the oscillator loop to
be dissipative. The synchronization parameters are each
controlled by a dc voltage. Adjusting oscillator feedback
saturation controls frequency pulling α, adjusting coupling
feedback amplitudes controls coupling β, and adjusting
piezovoltage controls frequency detuning Δω [29].
This system is designed to be integrable within CMOS

technologies. The system consists of transistor amplifiers,
saturation diodes, direction couplers (capacitors), and
phase shifters. Here we use adjustable attenuators; these
may also be implemented with adjustable amplifiers. The
phase shifters can be implemented with fixed resistance-
capacitance filters. However, we note that if we
measure the piezoelectric response in addition to the
piezoresistive response, we are able to directly capture
both the in-phase and out-of-phase response of the oscil-
lators. Since all parameters are controlled with dc voltages,
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FIG. 1 (color online). Simplified circuit schematic for experiment. Each NEMS resonator (colored SEM micrograph) is embedded in
two feedback loops: one is used for creating oscillations in each resonator, and the other creates coupling between the oscillators. The
attenuators after each limiter (single heavy line boxes) sets the level of oscillation, and constitutes a means to control the frequency
pulling. In the coupling loop the signal is amplified so that an attenuator (double heavy line boxes) adjusts the signal level in the common
loop, thereby setting the coupling strength. The frequency difference is controlled by adjusting the stress induced in the left resonator by
the piezovoltage.
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Figure S.1:   Driven response of the two devices. Note the similarity in frequency and quality 
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Synchronization of many coupled oscillators is widely found in nature and has the potential to
revolutionize timing technologies. Here, we demonstrate synchronization in arrays of silicon nitride
micromechanical oscillators coupled in an all-to-all configuration purely through an optical radiation field.
We show that the phase noise of the synchronized oscillators can be improved by almost 10 dB below the
phase noise limit for each individual oscillator. These results open a practical route towards synchronized
oscillator networks.

DOI: 10.1103/PhysRevLett.115.163902 PACS numbers: 42.82.Et, 05.45.Xt, 07.10.Cm, 85.85.+j

Nano- and micromechanical oscillator arrays have the
potential to enable high power and low noise integrated
frequency sources that play a key role in sensing and the
essential time keeping of modern technology [1–5]. The
challenge with building scalable oscillator arrays is that
micromechanical oscillators fabricated on a chip funda-
mentally have a spread of mechanical frequencies due to
unavoidable statistical variations in the fabrication process
[4,6–9]. This dispersion in mechanical frequencies has a
detrimental effect on the coherent operation in arrays of
micromechanical oscillators. Here, we show that arrays
consisting of three, four, and seven dissimilar microscale
optomechanical oscillators can be synchronized to oscillate
in unison, coupled purely through a common optical cavity
field using less than a milliwatt of optical power. We further
demonstrate that the phase noise of the oscillation signal
can be reduced by a factor of N below the thermomechan-
ical phase noise limit of each individual oscillator as N
oscillators are synchronized, in agreement with theoretical
predictions [10,11]. The highly efficient, low loss, and
controllable nature of light mediated coupling could put
large scale nano- and micromechanical oscillator networks
in practice [12–18].
Synchronization is a ubiquitous phenomenon found in

coupled oscillator systems [10,19]. The heart beat is a result
of the synchronized motion of pacemaker cells [20],
circadian rhythm arises because of coordinated body
physiology [21], and the global positioning system relies
on the synchronized operation of clocks. On the nanoscale,
synchronization has been experimentally demonstrated in
nanomechanical systems coupled through mechanical con-
nections [3], electrical capacitors [9], off-chip connections
[6], and an optical cavity [7,8]. However, these demon-
strations were limited to only two oscillators. Achieving
synchronization in large micromechanical oscillator net-
works requires scalable oscillator units and efficient and
controllable coupling mechanisms [12,13,22].

Here, we experimentally demonstrate that arrays of free
running micromechanical oscillators can be synchronized
when coupled purely through a common electromagnetic
field as predicted by theories [12,13]. A conceptual view
of an array of mechanical resonators coupled through light
is illustrated in Fig. 1(a). Each optomechanical oscillator
(OMO) possesses a slightly different frequency of
mechanical oscillation Ωi, and is only connected through a
common optical field (blue background). When a continu-
ous wave laser is coupled to a common electromagnetic

(d)

(a) (c)(b)

FIG. 1 (color online). Concept and devices. (a) Concept of
mediating coupling between mechanical oscillators (yellow)
through a global optical field (blue). The optical field provides
energy for each mechanical oscillator to vibrate at their natural
frequencies Ωi;j and also provide coupling between each
mechanical oscillator forming an all-to-all coupling topology.
When the optical coupling is strong, the oscillators synchronize
and vibrate at a common frequency. (b) A schematic of each
individual double disk. The edges are partly suspended to allow
for mechanical vibration. (c) Cross section of a double disk
showing the mechanical and the optical mode shapes. (d) Optical
microscope images of coupled optomechanical double-disk
oscillator arrays. The oscillators are mechanically separated by
a narrow gap (∼150 nm) and coupled solely through the optical
evanescent field. The squares and strings are support structures
for tapered optical fibers.

PRL 115, 163902 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 OCTOBER 2015

0031-9007=15=115(16)=163902(5) 163902-1 © 2015 American Physical Society

field mode spanning several micromechanical oscillators,
the light can provide both the drive for self-sustaining
oscillations and the necessary coupling between the indi-
vidual oscillators for synchronization through optical
forces. When the laser power is just above the self-
sustaining oscillation threshold of the mechanical oscilla-
tors, they are expected to vibrate at their natural frequencies
Ωi. When the laser power is high so that the optically
mediated coupling is strong enough to overcome the
difference in Ωi, the mechanical oscillators can reach
synchronization.
The effective coupling between the mechanical resona-

tors can be visualized through the following equation

ẍi þ Γi _xi þΩ2
i xi ¼ FðiÞ

opt;

FðiÞ
opt ∝ jbðxi;…; xjÞj2; ð1Þ

where xi, Γi, and Ωi are the mechanical displacement,
damping, and mechanical frequency of the ith OMO and
bðxi;…; xjÞ is the amplitude of the coupled optical super-
mode that spatially spans all cavities in the array. It is clear
from the equation above that the optical force Fopt depends
on the energy stored in the optical supermode, which is
affected by the displacement of each individual cavity.
Therefore, the optical field provides an effective nonlinear
mechanical coupling between the different oscillators that
form the basis for synchronization [7,8,13]. The onset of
synchronization, which intrinsically relies on nonlinearity
[23], could therefore be captured as Fopt is increased
through increasing the optical driving power [7].
The individual oscillator we use is a double-disk OMO

[Figs. 1(b) and 1(c)] composed of two free-standing silicon
nitride circular edges that support high quality (Q) factor
optical and mechanical modes [24,25]. The colocalized
modes shown in Fig. 1(c) lead to a strong coupling between
the optical and the mechanical degree of freedom. When
the cavity is excited by a continuous wave laser above the
oscillation threshold, the free-standing edges oscillate
coherently and modulate the laser producing a radio
frequency (rf) tone at the mechanical frequency of the
vibrating edges. Fabrication variation causes the mechani-
cal frequency of different OMOs in our arrays to spread
around %1 MHz centered at 132.5 MHz [26].
We fabricate micromechanical oscillator arrays with

double-disk OMOs that are optically coupled through
the evanescent field. The OMOs are physically separated
by a narrow gap (∼150 nm), which precludes any mechani-
cal connections while the optical evanescent field can still
propagate through the gap. Mechanical coupling through
the substrate connection is negligible as the mechanical
mode we excite is a high Q mode that is well isolated from
the substrate [24].
We excite the optical supermode that spatially spans over

all cavities to ensure that there is optical coupling among all

cavities [Fig. 2(a), dashed boxes]. The strong optical
coupling between the optical modes of each individual
cavity ai leads to the formation of optical supermodes bm
that have different optical frequencies and spatial geom-
etries [26]. Figure 2(a) illustrates the spatial intensity
profile of different optical supermodes bm when the optical
resonant frequency of the individual cavity ωi is identical.
The higher intensity regions are illustrated by higher
opacity of the halos around the cavities. We position a
tapered optical fiber to the close proximity of one OMO in
the arrays to couple light to the spatial evenly distributed
optical modes [dashed lines in Fig. 2(a)] while using an
infrared (IR) camera to monitor the scattered intensity from
the arrays, making sure all OMOs are excited. We monitor
the transmission through the tapered fiber by an amplified
photodiode and feed the electrical signal to a spectrum
analyzer.
We show the onset of synchronization by increasing the

excitation laser power, which effectively increases the
coupling between the OMOs. The laser wavelength is blue
detuned relative to the resonance of the optical supermode
that evenly spans all the OMOs [Fig. 2(a), dashed boxes],
enabling optomechanical amplification. In the three
coupled OMO array, as the laser power increases well
beyond the oscillation threshold for each individual oscil-
lator, the rf spectrum of the OMOs shows many strong

(a)
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Tunable IR laser IR Imaging
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Power 
meter

Power 
meter
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90:10

(b)

FIG. 2 (color online). Experimental configuration. (a) Optical
supermode spatial structures. The colored halos show where the
optical cavity field resides for different types of arrays. The more
opaque colors illustrate higher cavity field intensities when
compared to the rest of the cavities. The supermodes that spatially
span over all cavities with equal intensities are identified by
dashed lines. (b) Experimental setup. The coupled optomechan-
ical oscillator array is placed in a vacuum chamber and excited by
a tunable infrared (IR) camera through a tapered optical fiber. The
optical power and polarization are controlled by an variable
optical attenuator (VOA) and a fiber polarization controller (PC).
The optical transmission is detected by an amplified photodiode
(PD) and analyzed by an oscilloscope and a spectrum analyzer.
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frequency of 131 MHz with an e↵ective mass of 70 pg.

of the oscillation signal. The linewidth (�⌦) of a thermally limited oscillator is given by

�⌦ =
k

B

T

2P
out

�2

m

(S-2)

where k

B

is Boltzmann’s constant, T is the temperature, P
out

is the output power of the

oscillator and �
m

is the natural damping rate of the oscillator. Since the double disk we use

have a small e↵ective mass m
e↵

(Fig. S-7), which means a low oscillator power, the phase

noise is limited by thermomechanical noise. The oscillator power P
out

is given by,

P

out

=
1

2
m

e↵

⌦2

x

2�
m

(S-3)

where x is the maximum displacement amplitude of the oscillator. Equation (S-2) can

be represented as,

�⌦ =
k

B

T

m

e↵

⌦2

x

2

�
m

(S-4)

In our experiment, since the o↵set frequency �f we are interested in is much larger than

the linewidth (�⌦) of our oscillator, the phase noise L(�f) in dBc/Hz predicted by Leeson’s

equation7 can be simplified as,

L(�f) = 10Log
10

✓
�⌦

2⇡�f

2

◆
(S-5)

Substituting the parameters (T = 300 K; m
e↵

= 70 pg; �
m

= 2⇡ ⇥ 110 kHz) and x ⇠

g

om

/� = 10 pm to equation S-5, we obtain a theoretical estimate of the thermomechanical

noise limit of our oscillators which is �60 dBc/Hz at 10 kHz carrier frequency o↵set in good

7
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nitride circular edges 
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mechanical frequency around 132 MHz

coupling by evanescent field via narrow
gap (150 nm)
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oscillation peaks and a broad noise floor [Fig. 3(a)]. The
distinct oscillation peaks form because Ωi is different for
each OMO and they beat to generate many rf tones [30,31].
The increase in the noise floor is likely due to the finite
interaction between the mechanical modes mediated by the
optical field but not yet strong enough to transition into a
locked state [7,32,33]. As the laser power further increases
to Pin ¼ 280 μW, the onset of synchronization [Fig. 3(a)]
is evident as the peaks on the rf spectrum merge into a
single large peak and the noise floor is reduced. The much
weaker sidebands around the main oscillation signal are
due to the much weaker oscillatory motion induced by
thermal force displacing the OMOs from the synchronized
state [7]. In the four and seven coupled OMO arrays,
similar to the three-cavity system, we observe beating
between different mechanical modes and a broad noise
floor when the optical power is below the synchronization
threshold. As the laser power is increased, a single
oscillation peak appears accompanied by a sudden drop
in the noise floor, signifying the onset of synchronization
[Figs. 3(b) and 3(c)].
We show that in large arrays of OMOs, the phase noise of

the synchronized signal can be reduced below the thermo-
mechanical noise limit of an individual OMO by almost
10 dB. The phase noise of the modulated output light is
expected to drop as the oscillators are synchronized
[6,10,11]. We measure the phase noise of our oscillators
at 10 kHz offset from the carrier oscillation frequency,
where the phase noise of our oscillator is dominated by
thermomechanical fluctuation [26,34–36], a fundamental

limit imposed to the mechanical oscillator due to the
thermal bath of the environment. In Fig. 4(a), we show the
measured phase noise in a 1 × 2 OMO array [8]. As shown
in Fig. 4(a), the single OMO phase noise [26] at low optical
power is ∼ − 60 dBc=Hz and gradually increases as the
laser power is increased. The increase of phase noise is due
to phase slipping between the two OMOs [6]. As the
coupling between the OMOs increases with increasing
laser power, they synchronize. As expected, we observe the
phase noise drops by ∼3 dB as the two OMOs move from
the one-OMO oscillating state to a synchronized oscillation
state. Since the oscillators are nearly identical, synchron-
ized oscillations can be viewed as two oscillators operating
coherently, providing a larger effective mass while not
reducing the oscillation frequency [35]. In Fig. 4(c), we
show the measured phase noise of each large array of
oscillators by driving the system at high optical powers at
the optimal optical detuning where the phase noise is a
minimum [26]. The lowest phase noise measured in each
array of different size is plotted in Fig. 4(b). The measured
phase noise follows the 1=N dependence predicted by
theory [10,11,35,37].
The drop in phase noise can also be used to determine the

number of synchronized OMOs in a single array oscillating
in different states. We measure the phase noise in the 2 × 2
array as the oscillators change from a state where only two
OMOs are oscillating to a state where all four OMOs are
oscillating, as we infer from the light scattering intensities
captured on the IR camera. Figure 4(c) shows the power
spectrum of the transmitted light when the laser is tuned

(a) (b) (c)

FIG. 3 (color online). Synchronization in arrays of OMOs. Optical power spectrum of the (a) three-, (b) four-, and (c) seven-OMO
system as the input optical power increases. The vertical scale is from −110 to 0 dBm for each trace. Synchronization is characterized by
the sudden noise floor drop and the emergence of a single frequency in the optical power spectrum as indicated in the graphs. The
disorder in natural mechanical frequencies and incoherent dynamics before the onset of synchronization is evident from the rf peaks and
the broad noise floor. The seven-resonator array (c) shows multiple changes of noise shapes before eventually synchronizing, indicating
the presence of multiple oscillation states as a result of many OMOs.
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mutual coupling via the cavity field. Figure 2(a) displays
the evolution of the rf power spectrum of the transmitted
probe laser light (the pump laser is blue detuned at!0=! ¼
0:3, where !0 is the detuning between the laser and cavity
frequency, and ! is the cavity linewidth). At the lowest
pump powers the thermomechanical motion of each reso-
nator is visible as two lines at 4.0 and 6.5 MHz, respec-
tively. Upon increasing the pump power in this first regime,

the backaction amplifies their Brownian motion. Also, the
optical spring effect [19] is visible as an increase in
the resonance frequencies. Both effects are stronger in
the 4 MHz resonator since it is in the buckled down state
[15]. The difference in backaction confirms that optical
backaction is stronger than photothermal effects as the
latter would be the same on both resonators [20].
When the pump is increased beyond "2:7 dBm, the

optomechanical gain fully compensates the mechanical
damping of the resonator with lower threshold, which we
will label as "1", which starts to self-oscillate. This demar-
cates the onset of regime II, which ranges from "2:7 to
0.2 dBm. Yet, even though the oscillation amplitude of
resonator 1 increased dramatically, the thermal motion of
resonator 2 is undisturbed and is still clearly visible in
Figs. 2(a) and 2(b). Note that the frequency difference
between the two resonators (2.5 MHz) is much larger
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FIG. 2 (color online). (a) The evolution of the rf power spec-
trum of the transmitted light as the pump power increases.
(b)–(e) Cuts through panel (a) at the indicated pump power
when both resonators are in a thermal state regime I, (b);
(c) one resonator is in thermal motion while the other resonator
experiences regenerative oscillations (regime II); (d) the chaotic
regime (III) and (e) the two resonators are synchronized (regime
IV). The insets schematically show the energy of resonators 1
(left) and 2 (right); dots correspond to small thermal motion, and
lines to large oscillations.
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FIG. 1 (color online). (a) Micrograph of a racetrack cavity
with two 110 nm# 500 nm# 10 "m suspended portions as
nanomechanical resonators. Insets show scanning electron mi-
crographs of the mechanical resonators in buckled down (left)
and buckled up (right) state. (b),(c) thermal noise spectra in the
up-up (b) down-up state (c). (d) The measurement setup with a
weak probe laser, and a pump.
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mutual coupling via the cavity field. Figure 2(a) displays
the evolution of the rf power spectrum of the transmitted
probe laser light (the pump laser is blue detuned at!0=! ¼
0:3, where !0 is the detuning between the laser and cavity
frequency, and ! is the cavity linewidth). At the lowest
pump powers the thermomechanical motion of each reso-
nator is visible as two lines at 4.0 and 6.5 MHz, respec-
tively. Upon increasing the pump power in this first regime,

the backaction amplifies their Brownian motion. Also, the
optical spring effect [19] is visible as an increase in
the resonance frequencies. Both effects are stronger in
the 4 MHz resonator since it is in the buckled down state
[15]. The difference in backaction confirms that optical
backaction is stronger than photothermal effects as the
latter would be the same on both resonators [20].
When the pump is increased beyond "2:7 dBm, the

optomechanical gain fully compensates the mechanical
damping of the resonator with lower threshold, which we
will label as "1", which starts to self-oscillate. This demar-
cates the onset of regime II, which ranges from "2:7 to
0.2 dBm. Yet, even though the oscillation amplitude of
resonator 1 increased dramatically, the thermal motion of
resonator 2 is undisturbed and is still clearly visible in
Figs. 2(a) and 2(b). Note that the frequency difference
between the two resonators (2.5 MHz) is much larger
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FIG. 2 (color online). (a) The evolution of the rf power spec-
trum of the transmitted light as the pump power increases.
(b)–(e) Cuts through panel (a) at the indicated pump power
when both resonators are in a thermal state regime I, (b);
(c) one resonator is in thermal motion while the other resonator
experiences regenerative oscillations (regime II); (d) the chaotic
regime (III) and (e) the two resonators are synchronized (regime
IV). The insets schematically show the energy of resonators 1
(left) and 2 (right); dots correspond to small thermal motion, and
lines to large oscillations.
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FIG. 1 (color online). (a) Micrograph of a racetrack cavity
with two 110 nm# 500 nm# 10 "m suspended portions as
nanomechanical resonators. Insets show scanning electron mi-
crographs of the mechanical resonators in buckled down (left)
and buckled up (right) state. (b),(c) thermal noise spectra in the
up-up (b) down-up state (c). (d) The measurement setup with a
weak probe laser, and a pump.
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two nanomechanical resonators 
integrated in an optical racetrack cavity;
10 μm long, 110 nm thick, 500 nm wide

frequency of 6.5 MHz (buckled-up)

Vn: power spectrum of transmitted light

mutual coupling via the cavity field. Figure 2(a) displays
the evolution of the rf power spectrum of the transmitted
probe laser light (the pump laser is blue detuned at!0=! ¼
0:3, where !0 is the detuning between the laser and cavity
frequency, and ! is the cavity linewidth). At the lowest
pump powers the thermomechanical motion of each reso-
nator is visible as two lines at 4.0 and 6.5 MHz, respec-
tively. Upon increasing the pump power in this first regime,

the backaction amplifies their Brownian motion. Also, the
optical spring effect [19] is visible as an increase in
the resonance frequencies. Both effects are stronger in
the 4 MHz resonator since it is in the buckled down state
[15]. The difference in backaction confirms that optical
backaction is stronger than photothermal effects as the
latter would be the same on both resonators [20].
When the pump is increased beyond "2:7 dBm, the

optomechanical gain fully compensates the mechanical
damping of the resonator with lower threshold, which we
will label as "1", which starts to self-oscillate. This demar-
cates the onset of regime II, which ranges from "2:7 to
0.2 dBm. Yet, even though the oscillation amplitude of
resonator 1 increased dramatically, the thermal motion of
resonator 2 is undisturbed and is still clearly visible in
Figs. 2(a) and 2(b). Note that the frequency difference
between the two resonators (2.5 MHz) is much larger
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FIG. 2 (color online). (a) The evolution of the rf power spec-
trum of the transmitted light as the pump power increases.
(b)–(e) Cuts through panel (a) at the indicated pump power
when both resonators are in a thermal state regime I, (b);
(c) one resonator is in thermal motion while the other resonator
experiences regenerative oscillations (regime II); (d) the chaotic
regime (III) and (e) the two resonators are synchronized (regime
IV). The insets schematically show the energy of resonators 1
(left) and 2 (right); dots correspond to small thermal motion, and
lines to large oscillations.
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and buckled up (right) state. (b),(c) thermal noise spectra in the
up-up (b) down-up state (c). (d) The measurement setup with a
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optomechanical systems look favorable
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Optomechanical systems couple light stored inside an optical cavity to the motion of a mechanical mode.

Recent experiments havedemonstrated setups, such as photonic crystal structures, that in principle allowone

to confine several optical and vibrational modes on a single chip. Here we start to investigate the collective

nonlinear dynamics in arrays of coupled optomechanical cells.We show that such ‘‘optomechanical arrays’’

can display synchronization, and that they can be described by an effective Kuramoto-type model.

DOI: 10.1103/PhysRevLett.107.043603 PACS numbers: 42.50.Wk, 07.10.Cm, 42.65.Sf

The emerging field of optomechanics seeks to explore the
interaction between nanomechanics and light (see [1] for a
recent review). Rapid progress in laser cooling of nano-
mechanical oscillators [2,3] promises new fundamental
tests of quantum mechanics [4], while applications benefit
from ultrasensitive detection of displacements, masses and
forces [5–7]. Recently, the exciting concept of optomechan-
ical crystals has been introduced [8–10], where defects in
photonic crystal structures are used to generate both local-
ized optical and mechanical modes that interact with each
other. For instance, this opens the prospect of integrated
optomechanical circuits combining several functions on a
single chip (see also [11,12]). On a fundamental level, this
raises questions concerning potential collective dynamics
in systems consisting of many coupled optomechanical
cells, which we will term optomechanical ‘‘arrays’’
[Figs. 1(a) and 1(b)]. Here we start to address this issue
and explore, in particular, synchronization phenomena.

Any optomechanical system consists of a laser-driven
optical mode (OM) whose frequency shifts in response to a
mechanical displacement: !!opt ¼ "Gx. For a laser red-
detuned from the OM (! ¼ !Laser "!opt < 0Þ, dynamical
backaction effects induced by the finite photon decay time
""1 lead to cooling of the mechanical motion. For blue
detuning (!> 0), antidamping results. Once this over-
comes the internal mechanical friction, a Hopf bifurcation
towards a regime of self-induced mechanical oscillations
takes place [Fig. 1(c)] [13–18]. While the mechanical
amplitude A is fixed, the oscillation phase ’ is undeter-
mined and, as we will see, may lock to external forces or to
other optomechanical oscillators.

Synchronization has first been discovered by Huygens and
is now recognized as an important feature of collective
nonequilibrium behavior in fields ranging from physics
over chemistry to biology and neuroscience [19]. A paradig-
matic, widely studied model for synchronization was intro-
duced by Kuramoto [20]. For two oscillators, his phase
evolution equation reads _’1 ¼ "1 þ K sinð’2 " ’1Þ,

and likewise for _’2. One finds synchronization ( _’1 ¼ _’2)
if the couplingK exceeds the thresholdKc ¼ j"2 ""1j=2,
and the phase lag !’ ¼ ’2 " ’1 vanishes for large K
according to sinð!’Þ ¼ ð"2 ""1Þ=2K. For the globally
coupled, mean-field type version of infinitely many oscilla-
tors, there is a phase transition towards synchronization
beyond some threshold Kc that depends on the frequency
distribution [21]. In many examples the Kuramoto model is
found as a generic, reduced description of the phase dynam-
ics. Nevertheless, for any specific system, it remains to be
seen whether this model (or possibly a structurally similar
variant thereof) applies at all, and how the coupling K is
connected to microscopic parameters [22–24]. We now turn
to this question in the case of optomechanical oscillators.
A single optomechanical cell consists of a mechanical

mode (displacement x) coupled to a laser-driven OM (light
amplitude #):

m €x ¼ "m"2x"m$ _xþ @Gj#j2; (1)

_# ¼
!
ið!þGxÞ " "

2

"
#þ "

2
#max: (2)

laser drivecell 1

cell 2optical mode
mechanical mode

(a)

amplitude

phase

laser
power

...(b)

(c)

bifurcation

FIG. 1 (color online). Optomechanical crystals may be used to
build arrays with several localized optical and mechanical
modes. (a) Potential setup fabricated as a periodically patterned,
freestanding dielectric beam on a chip with laser drive via
tapered fibre as in [8,9]. (b) Schematic array of mechanically
coupled optomechanical cells. (c) For a single cell, at sufficient
laser drive power, there is a Hopf bifurcation towards self-
induced mechanical oscillations with an undetermined phase ’.
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optomechanical arrays
(combined photonic and phononic crystals)

range of λ¼1620−1275nm. Plots of the photonic and
phononic band structures are shown in Figs. 1(b) and 1(c),
respectively. A significant benefit of the planar snowflake
crystal is that the optical guided-wave band gap lies sub-
stantially below the light line at the zone boundary
(νll ≳ 350 THz), enabling low-loss guiding and trapping
of light within the 2D plane.
Creation of localized defect states for phonons and

photons in the quasi-2D crystal is a two-step procedure.
First, a line defect is created, which acts as a linear
waveguide for the propagation of optical and acoustic
waves at frequencies within their respective band gaps [see
Figs. 1(d)–1(f)]. Second, the properties of the waveguide
are modulated along its length, locally shifting the bands
to frequencies that cannot propagate within the waveguide.
Thus, localized resonances are created from the band edge
of the guided modes. For the snowflake cavity studied
here, a small (3%) quadratic variation in the radius of the
snowflake holes is used to localize both the optical and
acoustic waveguide modes [23]. Simulated field profiles of
the fundamental optical resonance (ωo=2π ¼ 195 THz)
and strongly coupled X-band acoustic resonance (ωm=2π ¼
9.35 GHz) of such a snowflake crystal cavity are shown in

Figs. 1(g) and 1(h), respectively. Note that here we have
slightly rounded the features in the simulation to better
approximate the properties of the crystal that is actually
fabricated. The localized acoustic mode has a theoretical
vacuum optomechanical coupling rate of g0=2π ¼ 250 kHz
to the colocalized optical resonance, an effective motional
mass of 4 fg, and a zero-point-motion amplitude of
xzpf ¼ 15 fm. The coupling rate g0 denotes the frequency
shifts imparted on the optical cavity resonance by the
zero-point motion of the mechanical resonator.
Fabrication of the snowflake OMC cavity design con-

sists of electron beam lithography to define the snowflake
pattern, a C4F8∶SF6 inductively coupled plasma dry etch
to transfer the pattern into the 220 nm silicon device
layer of a SOI chip, and a HF wet etch to remove the
underlying SiO2 layer to release the patterned structure.
A zoom in of the cavity region of a fabricated device is
shown in the scanning electron microscope (SEM) image
of Fig. 2(a). Testing of the fabricated devices is performed
at cryogenic temperatures (Tb ∼ 20 K) and high vacuum
(P ∼ 10−6 Torr) in a helium continuous-flow cryostat.
An optical taper with a localized dimple region is used
to evanescently couple light into and out of individual
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FIG. 1 (color online). (a) Snowflake crystal unit cell. (b) Photonic and (c) phononic band structure of a silicon planar snowflake crystal
with ðd; r; w; aÞ ¼ ð220; 200; 75; 500Þ nm. Photonic band structures are computed with the MPB [24] mode solver, and phononic band
structures are computed with the COMSOL [25] finite-element method (FEM) solver. In the photonic band structure, only the fundamental
even-parity optical modes (solid blue curves) of the silicon slab are shown and the gray shaded area indicates the region above the light
line of the vacuum cladding. The dashed gray curves are leaky resonances above the light line. (d) Unit cell schematic of a linear
waveguide formed in the snowflake crystal, in which a row of snowflake holes are removed and the surrounding holes are moved
inwards by W, yielding a waveguide width Δy ¼

ffiffiffi
3

p
a − 2W. Guided modes of the waveguide propagate along x. (e) Photonic and (f)

phononic band structure of the linear waveguide with ðd; r; w; a;WÞ ¼ ð220; 210; 75; 500; 200Þ nm. The solid blue curves are
waveguide bands of interest; dashed lines are the other guided modes; shaded light blue regions are band gaps of interest; green tick
mark indicates the cavity mode frequencies; gray regions denote the continua of propagating modes outside of the snowflake crystal
band gap. (g) FEM simulated mode profile of the fundamental optical resonance at ωo=2π ¼ 195 THz (λo ¼ 1530 nm). The Ey
component of the electric field is plotted here, with red (blue) corresponding to positive (negative) field amplitude. (h) FEM simulated
mechanical resonance displacement profile for mode with ωm=2π ¼ 9.35 GHz and g0=2π ¼ 250 kHz. Here, the magnitude of the
displacement is represented by color (large displacement in red, zero displacement in blue).
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optomechanical systems look favorable

Mari et al., PRL 111, 103605 (2013)

coupled optomechanical cells = 
plausible candidate for quantum synchronization experiments
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We introduce and characterize two different measures which quantify the level of synchronization of

coupled continuous variable quantum systems. The two measures allow us to extend to the quantum

domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal

bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded;

however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded

below a certain threshold. We elucidate some interesting connections between entanglement and

synchronization and, finally, discuss an application based on quantum optomechanical systems.

DOI: 10.1103/PhysRevLett.111.103605 PACS numbers: 42.50.Wk, 05.45.Xt, 07.10.Cm, 42.50.Lc

In the 17th century, Huygens noticed that the oscillations
of two pendulum clocks with a common support tend to
synchronize [Fig. 1(a)] [1]. Since then, analogous phe-
nomena have been observed in a large variety of different
contexts, e.g., neuron networks, chemical reactions, heart
cells, fireflies, etc. [2]. They are all instances of what it is
called the spontaneous synchronization effect where two or
more systems, in the complete absence of any external
time-dependent driving force, tend to synchronize their
motion solely due to their mutual coupling. The emergence
of spontaneous synchronization in so many different physi-
cal settings encouraged its investigation within classical
nonlinear dynamical systems. Here, given the time evolu-
tion of two dynamical variables, such as the position of two
pendula, standard methods exist to verify whether their
motion is synchronized [2]. For quantum systems, how-
ever, the same approaches cannot be straightforwardly
extended due to the absence of a clear notion of phase-
space trajectories. The aim of this work is to address this
problem, developing a consistent and quantitative theory of
synchronization for continuous variable (CV) systems
evolving in the quantum regime [3]. To this aim we intro-
duce two different quantum measures of synchronization,
extrapolating them from notions of complete and phase
synchronization introduced for classical models. We will
show that quantum mechanics sets bounds on the achiev-
able level of synchronization between two CV systems and
we will discuss the relationship between entanglement and
synchronization. We finally apply our approach for study-
ing the dynamics of coupled optomechanical systems [4,5].

In the quantum domain synchronization has been
studied in various contexts, such as quantum information
protocols [6], two-level systems [7], and stochastic systems
[8]. While our measures could also, in principle, be
extended to these cases, our endeavor is specifically
framed in the research line investigating the spontaneous
synchronization of micro- and nanomechanical systems

[9–17]. Recent experimental advances allow us to realize
optomechanical arrays composed of two or more coupled
mechanical resonators controlled close to their quantum
regime by laser driving [18–21]. Such devices have all the
properties (nonlinear dynamics, limit cycles, etc.) that are
necessary for the emergence of spontaneous synchroniza-
tion [9,22] and indeed some first experimental evidences of
this effect have been found [14,15,17].
Quantum synchronization measures.—In a purely

classical setting, synchronization is mostly studied in the
context of autonomous nonlinear systems undergoing limit
cycles or chaotic evolution (linear systems being usually
excluded because they converge to constant or unstable
solutions). In this scenario one can identify different forms
of synchronization [2]. Complete synchronization is
achieved when (say) two subsystems S1 and S2, initialized
into independent configurations, acquire identical trajecto-
ries under the effects of mutual interactions. Specifically,
given two CV classical systems characterized by the
(dimensionless) canonical variables q1ðtÞ, p1ðtÞ and q2ðtÞ,

1 2 n

1 2 n

mechanical
modes

optical
modes

laser
driving

(a) (b)

FIG. 1 (color online). Huygens’ original sketch [1] of two
synchronizing pendulum clocks (a) and the quantum mechanical
analogue consisting of two (or more) coupled optomechanical
systems (b). Here, mechanical resonators are driven into self-
sustained oscillations by the nonlinear radiation pressure force of
independent optical modes. A weak mechanical interaction is
responsible for the spontaneous synchronization of the limit
cycles. All symbols are defined in the main text.
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QM formalism

time evolution
(von Neumann equation) 

i~ d

dt
⇢(t) = [H, ⇢(t)]

→ unitary time evolution, no damping/relaxation

how to describe damping?! 
how to describe the harmonic drive?
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quantum van der Pol equation

Markovian quantum master equation with dissipative terms

negative damping,
adds a phonon at rate

nonlinear damping,
removes two phonons
at rate 
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classical and quantum limit

→ negative damping dominates
→ many oscillator levels are populated
→ classical limit

�1 � �2

�1 ⌧ �2 → nonlinear damping dominates
→ few oscillator levels are populated
     (only two for                   , since
     2-phonon processes cannot relax      ) 
→ quantum limit

�2/�1 ! 1
|1i



phase-space trajectory and Wigner function

quantum phase-space
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spectral function

spectra and observed frequency:

Sqm(!) =

Z 1

�1
dt ei!t hb̂†(t)b̂(0)iScl(!) =

Z 1

�1
dt ei!t�⇤(t)�(0)

see also Cresser et al., PRA 1982; Schleich and Scully PRA 1988
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observed frequency vs. detuning

aL
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interpretation: quantum noise suppresses synchronization

S. Walter, A. Nunnenkamp, and C. Bruder,  Phys. Rev. Lett. 112, 094102 (2014)
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physical realization

quadratic optomechanical coupling to favor two-phonon processes

engineer dissipative processes in a “membrane-in-the-middle” 
optomechanical setup using two lasers
J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, and J.G.E. Harris, Nature 452, 72 (2008)

A. Nunnenkamp, K. Børkje, J.G.E. Harris, and S.M. Girvin, PRA 82, 021806(R) (2010)

�1D[b̂†]
detuned to the blue one-phonon sideband

negative damping

�2D[b̂2]

detuned to the red two-phonon sideband
non-linear damping
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g(b†1b2 + b†2b1)
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quantum

g

2
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2

reactive = via a term in the Hamiltonian, e.g.



two coupled oscillators

different types of coupling:

dissipative = via a term in the equation of motion, e.g.

classical

DD[b1 � b2]⇢ quantum

D(ẋ2 � ẋ1)

g(b†1b2 + b†2b1)

classical

quantum

g

2
(x1 � x2)

2

reactive = via a term in the Hamiltonian, e.g.



two dissipatively coupled oscillators
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S. Walter, A. Nunnenkamp, and C. Bruder,  Ann. Phys. (Berlin) 527, 131(2015)

⇢̇ = L0⇢+DD[b1 � b2]⇢



conclusion 

• experiments in microsystems are approaching the 
quantum threshold

• toy model: driven quantum van der Pol oscillator

• phase space plots: hint towards quantum synchronization

• power spectrum as important observable

• absence of true frequency locking due to quantum noise

• similar for two dissipatively coupled vdP oscillators
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Ehud Amitai 

Niels Lörch

Andreas Nunnenkamp, Basel → Cambridge

Stefan Walter, Basel → Erlangen

S. Walter, A. Nunnenkamp, and C. Bruder,  Phys. Rev. Lett. 112, 094102 (2014)
S. Walter, A. Nunnenkamp, and C. Bruder,  Ann. Phys. (Berlin) 527, 131 (2015)
N. Lörch, E. Amitai, A. Nunnenkamp, and C. Bruder, arXiv:1603.01409



two dissipatively coupled oscillators

S. Walter, A. Nunnenkamp, and C. Bruder,  Ann. Phys. (Berlin) 527, 131(2015)

possible realization:
couple two vdP oscillators to a common optical mode c

vdP1 vdP2

H
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= ��
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2 D[b2
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� = ⇢c ⌦ ⇢



two dissipatively coupled oscillators

S. Walter, A. Nunnenkamp, and C. Bruder,  Ann. Phys. (Berlin) 527, 131(2015)

possible realization:
couple two vdP oscillators to a common optical mode c

vdP 1 vdP 2

!i �  � Gi, �
(i)
1 , �(i)

2 eliminate mode c
�c ⇡ �!1,2
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b) choose
c) choose
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X

i=1,2

�i
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G1 = G2 = G


