
Pybinding: modelingelectronicstructureswith Tight-Binding
Bert Jorissen bert.jorissen@uantwerpen.be http://pybinding.site

Lattice
Defines unit-cell

Å Saves the onsite and hopping energies

Å Automatically makes the right Brillouin-zone

Å Makes plots for the hoppings and the states

Example: create a lattice for monolayer graphene
import pybinding as pb
import numpy as np
import matplotlib.pyplot as plt

a = 0.24595 - Unit cell length in nm
t = - 2.8 - Nearest neighbour hopping in

eV
lattice = pb. Lattice (- Create a hexagonal lattice

a1=[a, 0], with vectors a1 and a2
a2=[- a/ 2, a/ 2 * np.sqrt (3)]

)
lattice . add_sublattices (- Add sublattices A and B at

('A' , [0, 0]), positions [0, 0] and
('B' , [a/ 2, a * np.sqrt (3)/ 6]) [a/2, a * np.sqrt (3)/6]

)
lattice . add_hoppings (Add hopping from A to B with

([0, 0], 'A' , 'B' , t), - energy t inside the main cell
([- 1, - 1], 'A' , 'B' , t), - Add hopping from A to B to
([- 1, 0], 'A' , 'B' , t) the cells at[0,1] and [1,0]

)

lattice . plot () - Plot the positions, vector
plt.figure () and hopping of the lattice
lattice . plot_brillouin_zone () - Plot the Brillouin zone

of the lattice

Model

Example: making a system with different shapes for a TMD

from pybinding.repository.group6_tmd import monolayer_3band

a = 0.3190

shape = pb. regular_polygon (num_sides=6, radius =5)

shape - = pb. circle (radius =0.5)

model = pb. Model(monolayer_3band(name ="MoS2"), shape,

pb. translational_symmetry (a1 =8, a2 =False))

plt . figure (figsize =pb. pltutils . cm2inch(17, 7))

solver = pb. solver . lapack (model)

solver . set_wave_vector ([0, 0])

ldos = solver . calc_spatial_ldos (energy =0, broadening =0.01)

ldos . plot(site_radius =(0.01 , 0.08))

pb. pltutils . colorbar ()

$ pip install pybinding

Model
Creates a system

Å Uses lattice

Å Define the shape

Å Add leads

Å Add periodic boundary

Å Build Hamiltonian

Example: create a model with periodic boundary conditions
model = pb.Model (lattice , - Create a model use lattice defined before

pb.translational_symmetry ()) - Apply periodic boundary conditions

%ØÁÍÐÌÅƙ ÓÏÌÖÉÎÇ ÇÒÁÐÈÅÎÅƦÓ ÂÁÎÄ ÓÔÒÕÃÔÕÒÅ ÕÓÉÎÇ Lapack
solver = pb. solver.lapack (model) - create a solver for model

that uses Lapack from SciPy
bz = lattice.brillouin_zone () - Get the corners of the BZ
gamma = [0, 0] - Gamma point
K = bz[0] - K point
M = (bz[0] + bz[1]) / 2 - M point

bands = solver.calc_bands (- Solve the band structure
gamma, K, M, gamma along the given path

)

bands.plot (point_labels = - Plot the band structure
[r' \ Gamma', ʎ+Ʀ, 'M' , r' \ Gamma'])

plt.figure ()
lattice.plot_brillouin_zone ()
bands.k_path.plot () - Plot the given path

Installation
.

Documentation
http://pybinding.site
ÅTutorial

ÅAPI reference

ÅUsefull examples

Tight-Binding: theory

The tight-binding (TB) method makes a

Hamiltonian using approximate single particle

states. The modelled wavefunction is a

combination of the parts given by each atom

and its orbitals. For example, the part given by

the p-orbital:

The wavefunction must satisfy the Bloch

condition:

This gives:

The Hamiltonian is given as

With µ & ɜthe band or orbital, i & j the position

of the state, Ůthe onsite energy and t the

hopping energy. For most TB-models, only

hoppings between close neighbours are taken.

TB-models most often use ab initio calculations

to fit the coefficients Ůand t. This fit is arbitrary

and can give different results depending on the

wieghts given to specific properties like the

band gap.

Most often, Slater-Koster [1] integrals are used

as a basis to construct a model.

Pybinding [2] creates a Hamiltonian for a given

system and has tools to analyze the results.

[1] RJ. C. Slater, G. F. Koster, Simplified LCAO

Method for the Periodic Potential Problem, Phys.

Rev. 94 6, 1498-1524, (1954)

[2] D. Moldovan, M. Andelkovic, F. Peeters,

pybinding v0.9.5: a Python package for tight-binding

calculations, 10.5281/zenodo.4010216, (2020)

Modifiers & Generators
Modifier

Å Change onsite or hopping energies

Å Add vacancies

Å Change positions

Å Apply a constant potential field.

Kernel Polynomial Method (KPM)
Fast calculations on large scale systems

Å Efficient C++-implementation

Å Different dampening kernels available

Example: triaxial strain and pseudo magnetic fields in graphene

def triaxial_strain (c, beta= 3.37):
"Produce both the displacement and hopping energy modifier"
@pb.site_position_modifier
def displacement (x, y, z):

ux = 2* c * x* y
uy = 2* c * (x **2 - y**2)
return x + ux, y + uy, z

@pb.hopping_energy_modifier
def strained_hopping (energy, x1, y1, z1, x2, y2, z2):

l = np. sqrt ((x1 - x2) **2 + (y1 - y2) **2 + (z1 - z2) **2)
w = l * np. sqrt (3) / a - 1
return energy * np. exp(- beta * w)

return displacement, strained_hopping

model = pb. Model(
lattice ,
pb. regular_polygon (num_sides=3, radius =5, angle =np. pi),
triaxial_strain (c =0.005)

)
kpm = pb. kpm(model)
for sub_name in ['A' , 'B']:

ldos = kpm. calc_ldos (energy =np. linspace (- 1, 1, 500),
broadening =0.03 ,
position =[0, 0], sublattice =sub_name)

ldos . plot(label =sub_name, ls =' -- ' if sub_name == ' B' else ' - ')
pb. pltutils . legend()

plt . figure (figsize =(7, 3.2))
for block, energy in zip (plt . GridSpec (nrows=1, ncols =2), [0, 0.25]):

plt . subplot(block)
plt . title ("LDOS - E = {} eV" . format(energy))
solver = pb. solver . arpack (model, k =30, sigma =energy)
ldos_map = solver . calc_spatial_ldos (energy =energy,

broadening =0.03)
ldos_map. plot()
pb. pltutils . colorbar ()

Compatibility
Pybinding can construct systems for

Å Kwant [3]: calculating scattering systems

Å KITE [4]: optimized for large scale transport calculations.

[3] C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, Kwant: a software package

for quantum transport, New J. Phys. 16, 063065 (2014).

[4] S.a.M. Joao, M. Andelkovic, L. Covaci, T.G. Rappoport, J.a.M.V.P. Lopes, and

A. Ferreira, Royal Society Open Science 7, 191809 (2020)

Example: using Kwant to calculate the conductivity
import kwant
from pybinding.repository.graphene import monolayer
def potential_barrier (v0, x0) :

"Barrier height `v0` in eV at ` - x0 <= x <= x0`"
@pb.onsite_energy_modifier (is_double =True)
def onsite (energy, x):

energy[np. logical_and (- x0 <= x, x <= x0)] = v0
return energy

return onsite
def make_model(length, width, v0 =0):

model = pb. Model(monolayer (), pb . rectangle (length , width),
potential_barrier (v0, length / 4))

model. attach_lead (- 1, pb . line([- length /2 , - width /2], [- length /2 , width /2]))
model. attach_lead (1, pb . line([length /2 , - width /2], [length /2 , width /2]))
return model

model = make_model(length =1, width =2)
model. plot()

electron_energy , length , width = 0.25 , 15, 15
barrier_heights = np. linspace (0, 0.5 , 100)
transmission = []
for v_barrier in barrier_heights :

model = make_model(length , width , v_barrier)
kwant_system = model. tokwant ()
smatrix = kwant . smatrix (kwant_system , energy =electron_energy)
transmission . append(smatrix.transmission (1, 0))

plt . figure ()
plt . plot(barrier_heights , transmission)

DOS for twisted bilayer graphene at 2.005° and 13.741° with ~0.7 billion

atoms. System built by Pybinding and calculated using KITE. [4].

Repository
implementation for TB-models of:

Å Graphene

Å Phosphorene

Å Transition Metal Dichalcogenides (TMD)

Solver
Eigenvalue-solver for a system

Å Lapack: exact solver, small systems

Å Arpack: subset of states for a certain energy, larger systems

Å FEAST: reuse previous results, needs separate compilation

Calculates

Å band structure

Å Eigenvectors

Å the Local Density Of States (LDOS)

Å spatial LDOS

Calculates

Å Spatial LDOS

Å Conductivity

Å Greenôsfunctions

Å DOS

Generator

Å Adds sites

Å Adds hopping

Å Make heterostructures: combine a material from

a lattice with a one included with a generator.

The figures of Capri with twisted bilayer graphene use modifiers, the twisted graphene/hBN uses generators.

